The effects of Non3 mutations on chromatin organization in Drosophila melanogaster
https://doi.org/10.18699/vjgb-25-43
Abstract
The nucleolus is a large membraneless subnuclear structure, the main function of which is ribosome biogenesis. However, there is growing evidence that the function of the nucleolus extends beyond this process. While the nucleolus is the most transcriptionally active site in the nucleus, it is also the compartment for the location and regulation of repressive genomic domains and, like the nuclear lamina, is the hub for the organization of inactive heterochromatin. Studies in human and Drosophila cells have shown that a decrease in some nucleolar proteins leads to changes in nucleolar morphology, heterochromatin organization and declustering of centromeres. This work is devoted to the study of the effects of Novel nucleolar protein 3 (Non3) gene mutations in D. melanogaster on the organization of chromatin in the nucleus. Previously, it was shown that partial deletion of the Non3 gene leads to embryonic lethality, and a decrease in NON3 causes an extension of ontogenesis and formation of a Minute-like phenotype in adult flies. In the present work, we have shown that mutations in the Non3 gene suppress the position effect variegation (PEV) and increase the frequency of meiotic recombination. We have analyzed the classical heterochromatin markers in Non3 mutants and shown that the amount of the HP1 protein as well as the modification of the histone H3K9me2 do not change significantly in larval brains and salivary glands compared to the control in Western blot analysis. Immunostaining with antibodies to HP1 and H3K9me2 did not reveal a significant reduction or change in the localization patterns of these proteins in the pericentromeric regions of salivary gland polytene chromosomes either. We analyzed the localization of the HP1 protein in Non3 mutants using DNA adenine methyltransferase identification (DamID) analysis and did not find substantial differences in protein distribution compared to the control. In hemocytes of Non3 mutants, we observed changes in the morphology of the nucleolus and in the size of the region detected by anti-centromere antibodies, but this was not accompanied by declustering of centromeres and their untethering from the nucleolar periphery. Thus, the NON3 protein is important for the formation/function of the nucleolus and is required for the correct chromatin packaging, but the exact mechanism of NON3 involvement in these processes requires further investigations.
Keywords
About the Authors
A. A. YushkovaRussian Federation
Novosibirsk
A. A. Ogienko
Russian Federation
Novosibirsk
E. N. Andreyeva
Russian Federation
Novosibirsk
A. N. Pindyurin
Russian Federation
Novosibirsk
A. E. Letiagina
Russian Federation
Novosibirsk
E. S. Omelina
Russian Federation
Novosibirsk
References
1. Allshire R.C., Madhani H.D. Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol. 2018;19(4):229-244. doi 10.1038/nrm.2017.119
2. Anders S., Pyl P.T., Huber W. HTSeq – a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166169. doi 10.1093/bioinformatics/btu638
3. Andreyeva E.N., Bernardo T.J., Kolesnikova T.D., Lu X., Yarinich L.A., Bartholdy B.A., Guo X., Posukh O.V., Healton S., Willcockson M.A., Pindyurin A.V., Zhimulev I.F., Skoultchi A.I., Fyodorov D.V. Regulatory functions and chromatin loading dynamics of linker histone H1 during endoreplication in Drosophila. Genes Dev. 2017;31(6):603-616. doi 10.1101/gad.295717.116
4. Andreyeva E.N., Ogienko A.A., Yushkova A.A., Popova J.V., Pavlova G.A., Kozhevnikova E.N., Ivankin A.V., Gatti M., Pindyurin A.V. Non3 is an essential Drosophila gene required for proper nucleolus assembly. Vavilov J Genet Breed. 2019;23(2):190-198. doi 10.18699/VJ19.481
5. Baker W.K. Crossing over in heterochromatin. Am Nat. 1958;92(862): 59-60. doi 10.1086/282010
6. Becker J.S., McCarthy R.L., Sidoli S., Donahue G., Kaeding K.E., He Z., Lin S., Garcia B.A., Zaret K.S. Genomic and proteomic resolution of heterochromatin and its restriction of alternate fate genes. Mol Cell. 2017;68(6):1023-1037.e1015. doi 10.1016/j.molcel.2017.11.030
7. Bersaglieri C., Santoro R. Genome organization in and around the nucleolus. Cells. 2019;8(6):579. doi 10.3390/cells8060579
8. Bischof J., Maeda R.K., Hediger M., Karch F., Basler K. An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases. Proc Natl Acad Sci USA. 2007;104(9):3312-3317. doi 10.1073/pnas.0611511104
9. Biyasheva A., Do T.V., Lu Y., Vaskova M., Andres A.J. Glue secretion in the Drosophila salivary gland: a model for steroid-regulated exocytosis. Dev Biol. 2001;231(1):234-251. doi 10.1006/dbio.2000.0126
10. Bizhanova A., Kaufman P.D. Close to the edge: heterochromatin at the nucleolar and nuclear peripheries. Biochim Biophys Acta Gene Regul Mech. 2021;1864(1):194666. doi 10.1016/j.bbagrm.2020.194666
11. Bloom K.S. Centromeric heterochromatin: the primordial segregation machine. Annu Rev Genet. 2014;48:457-484. doi 10.1146/annurevgenet-120213-092033
12. Boisvert F.M., van Koningsbruggen S., Navascués J., Lamond A.I. The multifunctional nucleolus. Nat Rev Mol Cell Biol. 2007;8(7):574-585. doi 10.1038/nrm2184
13. Boulon S., Westman B.J., Hutten S., Boisvert F.M., Lamond A.I. The nucleolus under stress. Mol Cell. 2010;40(2):216-227. doi 10.1016/j.molcel.2010.09.024
14. Chang C.H., Chavan A., Palladino J., Wei X., Martins N.M.C., Santinello B., Chen C.C., Erceg J., Beliveau B.J., Wu C.T., Larracuente A.M., Mellone B.G. Islands of retroelements are major components of Drosophila centromeres. PLoS Biol. 2019;17(5):e3000241. doi 10.1371/journal.pbio.3000241
15. Choi I., Jeon Y., Yoo Y., Cho H.S., Pai H.S. The in vivo functions of ARPF2 and ARRS1 in ribosomal RNA processing and ribosome biogenesis in Arabidopsis. J Exp Bot. 2020;71(9):2596-2611. doi 10.1093/jxb/eraa019
16. Connolly K., Burnet B., Sewell D. Selective mating and eye pigmentation: an analysis of the visual component in the courtship behavior of Drosophila melanogaster. Evolution. 1969;23(4):548-559. doi 10.1111/j.1558-5646.1969.tb03540.x
17. Cooper K.W. Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster, and the theory of “heterochromatin”. Chromosoma. 1959;10:535-588. doi 10.1007/BF00396588
18. Czermin B., Schotta G., Hülsmann B.B., Brehm A., Becker P.B., Reuter G., Imhof A. Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep. 2001;2(10):915-9. doi 10.1093/embo-reports/kve210
19. Dick C., Johns E.W. The effect of two acetic acid containing fixatives on the histone content of calf thymus deoxyribonucleoprotein and calf thymus tissue. Exp Cell Res. 1968;51(2-3):626-632. doi 10.1016/0014-4827(68)90150-x
20. Eisenhaber F., Wechselberger C., Kreil G. The Brix domain protein family – a key to the ribosomal biogenesis pathway? Trends Biochem Sci. 2001;26(6):345-347. doi 10.1016/s0968-0004(01)01851-5
21. Eissenberg J.C., Morris G.D., Reuter G., Hartnett T. The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics. 1992;131(2):345-352. doi 10.1093/genetics/131.2.345
22. Elgin S.C., Reuter G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb Perspect Biol. 2013;5(8):a017780. doi 10.1101/cshperspect.a017780
23. Garzino V., Pereira A., Laurenti P., Graba Y., Levis R.W., Le Parco Y., Pradel J. Cell lineage-specific expression of modulo, a dose-dependent modifier of variegation in Drosophila. EMBO J. 1992;11(12): 4471-4479. doi 10.1002/j.1460-2075.1992.tb05548.x
24. Gramates L.S., Marygold S.J., Santos G.D., Urbano J.M., Antonazzo G., Matthews B.B., Rey A.J., Tabone C.J., Crosby M.A., Emmert D.B., Falls K., Goodman J.L., Hu Y., Ponting L., Schroeder A.J., Strelets V.B., Thurmond J., Zhou P.; the FlyBase Consortium. FlyBase at 25: looking to the future. Nucleic Acids Res. 2017;45(D1):D663D671. doi 10.1093/nar/gkw1016
25. Grewal S.I., Jia S. Heterochromatin revisited. Nat Rev Genet. 2007; 8(1):35-46. doi 10.1038/nrg2008
26. Henikoff S., Ahmad K., Malik H.S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 2001;293(5532): 1098-1102. doi 10.1126/science.1062939
27. Hernandez-Verdun D., Roussel P., Thiry M., Sirri V., Lafontaine D.L. The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA. 2010;1(3):415-431. doi 10.1002/wrna.39
28. Heun P., Erhardt S., Blower M.D., Weiss S., Skora A.D., Karpen G.H. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell. 2006;10(3):303-315. doi 10.1016/j.devcel.2006.01.014
29. Hirano Y., Ishii K., Kumeta M., Furukawa K., Takeyasu K., Horigome T. Proteomic and targeted analytical identification of BXDC1 and EBNA1BP2 as dynamic scaffold proteins in the nucleolus. Genes Cells. 2009;14(2):155-166. doi 10.1111/j.1365-2443.2008.01262.x
30. Hoskins R.A., Carlson J.W., Wan K.H., Park S., Mendez I., Galle S.E., Booth B.W., Pfeiffer B.D., George R.A., Svirskas R., Krzywinski M., Schein J., Accardo M.C., Damia E., Messina G., Méndez-Lago M., de Pablos B., Demakova O.V., Andreyeva E.N., Boldyreva L.V., Marra M., Carvalho A.B., Dimitri P., Villasante A., Zhimulev I.F., Rubin G.M., Karpen G.H., Celniker S.E. The Release 6 reference sequence of the Drosophila melanogaster genome. Genome Res. 2015;25(3):445-458. doi 10.1101/gr.185579.114
31. Iarovaia O.V., Minina E.P., Sheval E.V., Onichtchouk D., Dokudovskaya S., Razin S.V., Vassetzky Y.S. Nucleolus: a central hub for nuclear functions. Trends Cell Biol. 2019;29(8):647-659. doi 10.1016/j.tcb.2019.04.003
32. Janssen A., Colmenares S.U., Karpen G.H. Heterochromatin: guardian of the genome. Annu Rev Cell Dev Biol. 2018;34:265-288. doi 10.1146/annurev-cellbio-100617-062653
33. Johansen K.M., Cai W., Deng H., Bao X., Zhang W., Girton J., Johansen J. Polytene chromosome squash methods for studying transcription and epigenetic chromatin modification in Drosophila using antibodies. Methods. 2009;48(4):387-397. doi 10.1016/j.ymeth.2009.02.019
34. Kapoor S., Zhu L., Froyd C., Liu T., Rusche L.N. Regional centromeres in the yeast Candida lusitaniae lack pericentromeric heterochromatin. Proc Natl Acad Sci USA. 2015;112(39):12139-12144. doi 10.1073/pnas.1508749112
35. Kyriacou E., Heun P. Centromere structure and function: lessons from Drosophila. Genetics. 2023;225(4):iyad170. doi 10.1093/genetics/iyad170
36. Langmead B., Trapnell C., Pop M., Salzberg S.L. Ultrafast and memoryefficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25. doi 10.1186/gb-2009-10-3-r25
37. Lindsley D.L., Zimm G.G. The Genome of Drosophila melanogaster. New York: Academic Press, 1992
38. Lu B.Y., Emtage P.C., Duyf B.J., Hilliker A.J., Eissenberg J.C. Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics. 2000;155(2):699-708. doi 10.1093/genetics/155.2.699
39. Maekawa S., Ueda Y., Yanagisawa S. Overexpression of a Brix domain-containing ribosome biogenesis factor ARPF2 and its interactor ARRS1 causes morphological changes and lifespan extension in Arabidopsis thaliana. Front Plant Sci. 2018;9:1177. doi 10.3389/fpls.2018.01177
40. Markstein M., Pitsouli C., Villalta C., Celniker S.E., Perrimon N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet. 2008;40(4):476483. doi 10.1038/ng.101
41. McPherson W.K., Van Gorder E.E., Hilovsky D.L., Jamali L.A., Keliinui C.N., Suzawa M., Bland M.L. Synchronizing Drosophila larvae with the salivary gland reporter Sgs3-GFP for discovery of phenotypes in the late third instar stage. Dev Biol. 2024;512:35-43. doi 10.1016/j.ydbio.2024.05.002 Meyer-Nava S., Nieto-Caballero V.E., Zurita M., Valadez-Graham V. Insights into HP1a-chromatin interactions. Cells. 2020;9(8):1866. doi 10.3390/cells9081866
42. Meyer-Nava S., Zurita M., Valadez-Graham V. Immunofluorescent staining for visualization of heterochromatin associated proteins in Drosophila salivary glands. J Vis Exp. 2021;174:e62408. doi 10.3791/62408
43. Morita D., Miyoshi K., Matsui Y., Toh-e A., Shinkawa H., Miyakawa T., Mizuta K. Rpf2p, an evolutionarily conserved protein, interacts with ribosomal protein L11 and is essential for the processing of 27 SB pre-rRNA to 25 S rRNA and the 60 S ribosomal subunit assembly in Saccharomyces cerevisiae. J Biol Chem. 2002;277(32):2878028786. doi 10.1074/jbc.M203399200
44. Németh A., Längst G. Genome organization in and around the nucleolus. Trends Genet. 2011;27(4):149-156. doi 10.1016/j.tig.2011.01.002
45. Olausson H.K., Nistér M., Lindström M.S. Loss of nucleolar histone chaperone NPM1 triggers rearrangement of heterochromatin and synergizes with a deficiency in DNA methyltransferase DNMT3A to drive ribosomal DNA transcription. J Biol Chem. 2014;289(50): 34601-34619. doi 10.1074/jbc.M114.569244
46. Padeken J., Heun P. Centromeres in nuclear architecture. Cell Cycle. 2013;12(22):3455-3456. doi 10.4161/cc.26697
47. Padeken J., Mendiburo M.J., Chlamydas S., Schwarz H.J., Kremmer E., Heun P. The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus. Mol Cell. 2013;50(2): 236-249. doi 10.1016/j.molcel.2013.03.002
48. Panse V.G., Johnson A.W. Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem Sci. 2010;35(5):260-266. doi 10.1016/j.tibs.2010.01.001
49. Pavlakis G.N., Jordan B.R., Wurst R.M., Vournakis J.N. Sequence and secondary structure of Drosophila melanogaster 5.8S and 2S rRNAs and of the processing site between them. Nucleic Acids Res. 1979;7(8):2213-2238. doi 10.1093/nar/7.8.2213
50. Petersen L.K., Stowers R.S. A Gateway MultiSite recombination cloning toolkit. PLoS One. 2011;6(9):e24531. doi 10.1371/journal.pone. 0024531
51. Pindyurin A.V. Genome-wide cell type-specific mapping of in vivo chromatin protein binding using an FLP-inducible DamID system in Drosophila. In: Kaufmann M., Klinger C., Savelsbergh A. (Eds) Functional Genomics. Methods in Molecular Biology. Vol. 1654. New York: Humana Press, 2017;99-124. doi 10.1007/978-1-4939-7231-9_7
52. Pindyurin A.V., Pagie L., Kozhevnikova E.N., van Arensbergen J., van Steensel B. Inducible DamID systems for genomic mapping of Conflict of interest. The authors declare no conflict of interest. chromatin proteins in Drosophila. Nucleic Acids Res. 2016;44(12): 5646-5657. doi 10.1093/nar/gkw176
53. Pindyurin A.V., Ilyin A.A., Ivankin A.V., Tselebrovsky M.V., Nenasheva V.V., Mikhaleva E.A., Pagie L., van Steensel B., Shevelyov Y.Y. The large fraction of heterochromatin in Drosophila neurons is bound by both B-type lamin and HP1a. Epigenetics Chromatin. 2018;11(1):65. doi 10.1186/s13072-018-0235-8
54. Quinodoz S.A., Ollikainen N., Tabak B., Palla A., Schmidt J.M., Detmar E., Lai M.M., Shishkin A.A., Bhat P., Takei Y., Trinh V., Aznauryan E., Russell P., Cheng C., Jovanovic M., Chow A., Cai L., McDonel P., Garber M., Guttman M. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell. 2018;174(3):744-757.e724. doi 10.1016/j.cell.2018.05.024
55. Razin S.V., Ulianov S.V. Genome-directed cell nucleus assembly. Biology (Basel). 2022;11(5):708. doi 10.3390/biology11050708
56. Rea S., Eisenhaber F., O’Carroll D., Strahl B.D., Sun Z.W., Schmid M., Opravil S., Mechtler K., Ponting C.P., Allis C.D., Jenuwein T. Regulation of chromatin structure by site-specific histone H3 methyl transferases. Nature. 2000;406(6796):593-599. doi 10.1038/35020506
57. Rodrigues A., MacQuarrie K.L., Freeman E., Lin A., Willis A.B., Xu Z., Alvarez A.A., Ma Y., White B.E.P., Foltz D.R., Huang S. Nucleoli and the nucleoli-centromere association are dynamic during normal development and in cancer. Mol Biol Cell. 2023;34(4):br5. doi 10.1091/mbc.E22-06-0237
58. Schotta G., Ebert A., Krauss V., Fischer A., Hoffmann J., Rea S., Jenuwein T., Dorn R., Reuter G. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 2002;21(5):1121-1131. doi 10.1093/emboj/21.5.1121
59. Schotta G., Ebert A., Reuter G. SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing. Genetica. 2003;117(2-3): 149-158. doi 10.1023/a:1022923508198
60. Sentmanat M.F., Elgin S.C. Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by transposable elements. Proc Natl Acad Sci USA. 2012;109(35):14104-14109. doi 10.1073/pnas.1207036109
61. Smirnov E., Cmarko D., Mazel T., Hornáček M., Raška I. Nucleolar DNA: the host and the guests. Histochem Cell Biol. 2016;145(4): 359-372. doi 10.1007/s00418-016-1407-x
62. Smith C.D., Shu S., Mungall C.J., Karpen G.H. The Release 5.1 annotation of Drosophila melanogaster heterochromatin. Science. 2007; 316(5831):1586-1591. doi 10.1126/science.1139815
63. Suárez Freire S., Perez-Pandolfo S., Fresco S.M., Valinoti J., Sorianello E., Wappner P., Melani M. The exocyst complex controls multiple events in the pathway of regulated exocytosis. eLife. 2024;12: RP92404. doi 10.7554/eLife.92404
64. Tavares A.A., Glover D.M., Sunkel C.E. The conserved mitotic kinase polo is regulated by phosphorylation and has preferred microtubuleassociated substrates in Drosophila embryo extracts. EMBO J. 1996; 15(18):4873-4883. doi 10.1002/j.1460-2075.1996.tb00868.x
65. Tracy C., Krämer H. Isolation and infection of Drosophila primary hemocytes. Bio Protoc. 2017;7(11):e2300. doi 10.21769/BioProtoc.2300
66. Trinkle-Mulcahy L. Nucleolus: the consummate nuclear body. In: Lavelle C., Victor J.-M. (Eds) Nuclear Architecture and Dynamics. Academic Press, 2018;257-282. doi 10.1016/B978-0-12-803480-4.00011-9
67. Ugrinova I., Monier K., Ivaldi C., Thiry M., Storck S., Mongelard F., Bouvet P. Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication. BMC Mol Biol. 2007;8:66. doi 10.1186/1471-2199-8-66
68. Westphal T., Reuter G. Recombinogenic effects of suppressors of position-effect variegation in Drosophila. Genetics. 2002;160(2):609621. doi 10.1093/genetics/160.2.609