Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Methylation index of the DLK1 and MKRN3 genes in precocious puberty

https://doi.org/10.18699/vjgb-25-47

Abstract

Precocious puberty (PP, OMIM 176400, 615346) is an autosomal dominant disorder caused by the premature reactivation of the hypothalamic-pituitary-gonadal axis. Genetic, epigenetic, and environmental factors play a decisive role in determining the timing of puberty. In recent years, genetic variants in the KISS1, KISS1R, MKRN3, and DLK1 genes have been identified as genetic causes of PP. The MKRN3 and DLK1 genes are imprinted, and therefore epigenetic modifications, such as DNA methylation, which alter the expression of these genes, can also contribute to the development of PP. The aim of this study is to determine the methylation index of the imprinting centers of the DLK1 and MKRN3 genes in girls with a clinical presentation of PP. The methylation index of the imprinting centers of the DLK1 and MKRN3 genes was analyzed in a group of 45 girls (age 7.2 ± 1.9 years) with a clinical presentation of PP and a normal karyotype using targeted massive parallel sequencing after sodium bisulfite treatment of DNA. The control group consisted of girls without PP (n = 15, age 7.9 ± 1.6 years). No significant age differences were observed between the groups (p > 0.8). Analysis of the methylation index of the imprinting centers of the DLK1 and MKRN3 genes revealed no significant differences between patients with PP and the control group. However, in the group of patients with isolated adrenarche, an increased methylation index of the imprinting center of the MKRN3 gene was observed (72 ± 7.84 vs 56.92 ± 9.44 %, p = 0.005). In the group of patients with central PP, 3.8 % of patients showed a decreased methylation index of the imprinting center of the DLK1 gene, and 11.5 % of probands had a decreased methylation index of the imprinting center of the MKRN3 gene. Thus, this study demonstrates that not only genetic variants but also alterations in the methylation index of the imprinting centers of the DLK1 and MKRN3 genes can contribute to the development of PP.

About the Authors

E. A. Sazhenova
Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk



O. Yu. Vasilyeva
Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk



D. A. Fedotov
Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk



M. B. Kankanam Pathiranage
Tomsk State University
Russian Federation

Tomsk



A. D. Lobanov
Siberian State Medical University
Russian Federation

Tomsk



А. Yu. Sambyalova
Scientific Center for Family Health and Human Reproduction Problems
Russian Federation

Irkutsk



E. E. Khramova
Scientific Center for Family Health and Human Reproduction Problems
Russian Federation

Irkutsk



L. V. Rychkova
Scientific Center for Family Health and Human Reproduction Problems
Russian Federation

Irkutsk



S. А. Vasilyev
Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences; Tomsk State University
Russian Federation

Tomsk



I. N. Lebedev
Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University
Russian Federation

Tomsk



References

1. Abi Habib W., Brioude F., Azzi S., Rossignol S., Linglart A., Sobrier M.-L., Giabicani É., Steunou V., Harbison M.D., Le Bouc Y., Netchine I. Transcriptional profiling at the DLK1/MEG3 domain explains clinical overlap between imprinting disorders. Sci Adv. 2019;5:e9425. doi 10.1126/sciadv.aau9425

2. Abreu A.P., Toro C.A., Song Y.B., Navarro V.M., Bosch M.A., Eren A., Liang J.N., Carroll R.S., Latronico A.C., Ronnekleiv O.K. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest. 2020;130(8):4486-4500. doi 10.1172/JCI136564

3. Alghamdi A. Precocious puberty: types, pathogenesis and updated management. Cures. 2023;15(10):e47485. doi 10.7759/cureus.47485

4. Bessa D.S., Maschietto M., Aylwin C.F., Canton A.P.-M., Brito V.N., Macedo D.B., Cunha-Silva M., … Netchine I., Krepischi A.C.V., Lomniczi A., Ojeda S.R., Latronico A.C. Methylome profiling of healthy and central precocious puberty girls. Clin Epigenetics. 2018; 10:e146. doi 10.1186/s13148-018-0581-1

5. Butler M.G. Imprinting disorders in humans: a review. Сurr Opin Pediatr. 2020;32(6):719-729. doi 10.1097/MOP.0000000000000965

6. Canton A.P.M., Steunou V., Sobrier M.-L., Montenegro L.R., Bessa D.S., Gomes L.G., Jorge A.A.L., Mendonca B.B., Brito V.N., Netchine I., Latronico A.C. Investigation of imprinting defects in MKRN3 and DLK1 in children with idiopathic central precocious puberty through specific DNA methylation analysis. J Endocr Soc. 2020;4(1):SUN-090.A426. doi 10.1210/jendso/bvaa046.847

7. Canton A.P.M., Krepischi A.C.V., Montenegro L.R., Costa S., Rosenberg C., Steunou V., Sobrier M.L., … Jorge A.A.L., Mendonca B.B., Netchine I., Brito V.N., Latronico A.C. Insights from the genetic characterization of central precocious puberty associated with multiple anomalies. Hum Reprod. 2021;36(2):506-518. doi 10.1093/humrep/deaa306

8. Chebotareva Yu.Yu., Petrov Yu.A., Rodina M.A. Some aspects of precocious puberty in preschool-age girls. Russian Journal of Woman and Child Health. 2022;5(3):215-222. doi 10.32364/2618-8430-2022-5-3-215-222 (in Russian)

9. Faienza M.F., Urbano F., Moscogiuri L.A., Chiarito M., De Santis S., Giordano P. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol (Lausanne). 2022;13:e1019468. doi 10.3389/fendo.2022.1019468

10. Fanis P., Morrou M., Tomazou M., Michailidou K., Spyrou G.M., Toumba M., Skordis N., Neocleous V., Phylactou L.A. Methylation status of hypothalamic Mkrn3 promoter across puberty. Front Endocrinol (Lausanne). 2022;13:e1075341. doi 10.3389/fendo.2022.1075341

11. Gomes L.G., Cunha-Silva M., Crespo R.P., Ramos C.O., Montenegro L.R., Canton A., Lees M., … Baracat E.C., Jorge A.A.L., Mendonca B.B., Brito V.N., Latronico A.C. DLK1 is a novel link between reproduction and metabolism. J Clin Endocrinol Metab. 2019;104(6):2112-2120. doi 10.1210/jc.2018-02010

12. Kagami M., Mizuno S., Matsubara K., Nakabayashi K., Sano S., Fuke T., Fukami M., Ogata T. Epimutations of the IG-DMR and the MEG3-DMR at the 14q32.2 imprinted region in two patients with Silver-Russell syndrome-compatible phenotype. Eur J Hum Genet. 2015;23(8):1062-1067. doi 10.1038/ejhg.2014.234

13. Kagami M., Yanagisawa A., Ota M., Matsuoka K., Nakamura A., Matsubara K., Nakabayashi K., Takada S., Fukami M., Ogatac T. Temple syndrome in a patient with variably methylated CpGs at the primary MEG3/DLK1:IG-DMR and severely hypomethylated CpGs at the secondary MEG3:TSS-DMR. Clin Epigenetics. 2019;11(1):e42. doi 10.1186/s13148-019-0640-2

14. Li C., Lu W., Yang L., Li Z., Zhou X., Guo R., Wang J., … Wang W., Huang X., Li Y., Gao S., Hu R. MKRN3 regulates the epigenetic switch of mammalian puberty via ubiquitination of MBD3. Natl Sci Rev. 2020;7(3):671-685. doi 10.1093/nsr/nwaa023

15. Li C., Han T., Li Q., Zhang M., Guo R., Yang Y., Lu W., … Zhou V., Han Z., Li H., Wang F., Hu R. MKRN3-mediated ubiquitination of Poly(A)-binding proteins modulates the stability and translation of GNRH1 mRNA in mammalian puberty. Nucleic Acids Res. 2021; 49(7):3796-3813. doi 10.1093/nar/gkab155

16. Li L.C., Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18(11):1427-1431. doi 10.1093/bio informatics/18.11.1427

17. Lomniczi A., Wright H., Castellano J.M., Matagne V., Toro C.A., Ramaswamy S., Plant T.M., Ojeda S.R. Epigenetic regulation of puberty via zinc finger protein-mediated transcriptional repression. Nat Commun. 2015;6:e10195. doi 10.1038/ncomms10195

18. Macedo D.B., Kaiser U.B. DLK1, Notch signaling and the timing of puberty. Semin Reprod Med. 2019;37(4):174-181. doi 10.1055/s-0039-3400963

19. Mackay D.J.G., Gazdagh G., Monk D., Brioude F., Giabicani E., Krzyzewska I.M., Kalish J.M., … Russo S., Tannorella P., Temple K.I., Õunap K., Tümer Z. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis. Clin Epigenetics. 2024;16:99. doi 10.1186/s13148-024-01713-y

20. Micangeli G., Paparella R., Tarani F., Menghi M., Ferraguti G., Carlomagno F., Spaziani M., Pucarelli I., Greco A., Fiore M. Clinical management and therapy of precocious puberty in the Sapienza university pediatrics hospital of Rome, Italy. Children (Basel). 2023; 10(10):e1672. doi 10.3390/children10101672

21. Monteagudo-Sánchez A., Hernandez M.J.R., Simon C., Burton A., Tenorio J., Lapunzina P., Clark S., … Kelsey G., López-Siguero J.P., de Nanclares G.P., Torres-Padilla M.E., Monk D. The role of ZFP57 and additional KRAB-zinc finger proteins in the maintenance of human imprinted methylation and multi-locus imprinting disturbances. Nucleic Acids Res. 2020;48(20):11394-11407. doi 10.1093/nar/gkaa837

22. Narusawa H., Ogawa T., Yagasaki H., Nagasaki K., Urakawa T., Saito T., Soneda S., … Naiki Y., Horikawa R., Ogata T., Fukami M., Kagami M. Comprehensive study on central precocious puberty: molecular and clinical analyses in 90 patients. J Clin Endocrinol Metab. 2024;26:e666. doi 10.1210/clinem/dgae666

23. Nicoara D.M., Scutca A.C., Mang N., Juganaru I., Munteanu A.I., Vitan L., Mărginean O. Central precocious puberty in Prader-Willi syndrome: a narrative review. Front Endocrinol (Lausanne). 2023; 14:e1150323. doi 10.3389/fendo.2023.1150323

24. Okae H., Chiba H., Hiura H., Hamada H., Sato A., Utsunomiya T., Kikuchi H., Yoshida H., Tanaka A., Suyama M., Arima T. Genomewide analysis of DNA methylation dynamics during early human development. PLoS Genet. 2014;10:e1004868. doi 10.1371/journal.pgen.1004868

25. Peterkova V.A., Alimova I.L., Bashnina E.B., Bezlepkina O.B., Bolotova N.V., Zubkova N.A., Kalinchenko N.Yu., … Maliev skiy O.A., Orlova E.M., Petryaykina E.E., Samsonova L.N., Taranushenko T.E. Clinical guidelines “Precocious puberty”. Problemy Endocrinologii = Problems of Endocrinology. 2021;67(5):84-103. doi 10.14341/probl12821 (in Russian)

26. Roberts S.A., Kaiser U.B. Genetic etiologies of central precocious puberty and the role of imprinted genes. Eur J Endocrinol. 2020; 183(4):107-117. doi 10.1530/EJE-20-0103

27. Sazhenova E.A., Vasilyev S.A., Rychkova L.V., Khramova E.E., Lebedev I.N. Genetics and epigenetics of precocious puberty. Russ J Genet. 2023;59(12):1277-1287. doi 10.1134/S1022795423120104

28. Shim Y.S., Lee H.S., Hwang J.S. Genetic factors in precocious puberty. Clin Exp Pediatr. 2022;65(4):172-181. doi 10.3345/cep.2021.00521

29. Tucci V., Isles A.R., Kelsey G., Ferguson-Smith A.C. Genomic imprinting and physiological processes in mammals. Cell. 2019;176(5): 952-965. doi 10.1016/j.cell.2019.01.043


Review

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)