1. Abi Habib W., Brioude F., Azzi S., Rossignol S., Linglart A., Sobrier M.-L., Giabicani É., Steunou V., Harbison M.D., Le Bouc Y., Netchine I. Transcriptional profiling at the DLK1/MEG3 domain explains clinical overlap between imprinting disorders. Sci Adv. 2019;5:e9425. https://doi.org/10.1126/sciadv.aau9425
2. Abreu A.P., Toro C.A., Song Y.B., Navarro V.M., Bosch M.A., Eren A., Liang J.N., Carroll R.S., Latronico A.C., Ronnekleiv O.K. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest. 2020;130(8):4486-4500. https://doi.org/10.1172/JCI136564
3. Alghamdi A. Precocious puberty: types, pathogenesis and updated management. Cures. 2023;15(10):e47485. https://doi.org/10.7759/cureus.47485
4. Bessa D.S., Maschietto M., Aylwin C.F., Canton A.P.-M., Brito V.N., Macedo D.B., Cunha-Silva M., … Netchine I., Krepischi A.C.V., Lomniczi A., Ojeda S.R., Latronico A.C. Methylome profiling of healthy and central precocious puberty girls. Clin Epigenetics. 2018; 10:e146. https://doi.org/10.1186/s13148-018-0581-1
5. Butler M.G. Imprinting disorders in humans: a review. Сurr Opin Pediatr. 2020;32(6):719-729. https://doi.org/10.1097/MOP.0000000000000965
6. Canton A.P.M., Steunou V., Sobrier M.-L., Montenegro L.R., Bessa D.S., Gomes L.G., Jorge A.A.L., Mendonca B.B., Brito V.N., Netchine I., Latronico A.C. Investigation of imprinting defects in MKRN3 and DLK1 in children with idiopathic central precocious puberty through specific DNA methylation analysis. J Endocr Soc. 2020;4(1):SUN-090.A426. https://doi.org/10.1210/jendso/bvaa046.847
7. Canton A.P.M., Krepischi A.C.V., Montenegro L.R., Costa S., Rosenberg C., Steunou V., Sobrier M.L., … Jorge A.A.L., Mendonca B.B., Netchine I., Brito V.N., Latronico A.C. Insights from the genetic characterization of central precocious puberty associated with multiple anomalies. Hum Reprod. 2021;36(2):506-518. https://doi.org/10.1093/humrep/deaa306
8. Chebotareva Yu.Yu., Petrov Yu.A., Rodina M.A. Some aspects of precocious puberty in preschool-age girls. Russian Journal of Woman and Child Health. 2022;5(3):215-222. https://doi.org/10.32364/2618-8430-2022-5-3-215-222 (in Russian)
9. Faienza M.F., Urbano F., Moscogiuri L.A., Chiarito M., De Santis S., Giordano P. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol (Lausanne). 2022;13:e1019468. https://doi.org/10.3389/fendo.2022.1019468
10. Fanis P., Morrou M., Tomazou M., Michailidou K., Spyrou G.M., Toumba M., Skordis N., Neocleous V., Phylactou L.A. Methylation status of hypothalamic Mkrn3 promoter across puberty. Front Endocrinol (Lausanne). 2022;13:e1075341. https://doi.org/10.3389/fendo.2022.1075341
11. Gomes L.G., Cunha-Silva M., Crespo R.P., Ramos C.O., Montenegro L.R., Canton A., Lees M., … Baracat E.C., Jorge A.A.L., Mendonca B.B., Brito V.N., Latronico A.C. DLK1 is a novel link between reproduction and metabolism. J Clin Endocrinol Metab. 2019;104(6):2112-2120. https://doi.org/10.1210/jc.2018-02010
12. Kagami M., Mizuno S., Matsubara K., Nakabayashi K., Sano S., Fuke T., Fukami M., Ogata T. Epimutations of the IG-DMR and the MEG3-DMR at the 14q32.2 imprinted region in two patients with Silver-Russell syndrome-compatible phenotype. Eur J Hum Genet. 2015;23(8):1062-1067. https://doi.org/10.1038/ejhg.2014.234
13. Kagami M., Yanagisawa A., Ota M., Matsuoka K., Nakamura A., Matsubara K., Nakabayashi K., Takada S., Fukami M., Ogatac T. Temple syndrome in a patient with variably methylated CpGs at the primary MEG3/DLK1:IG-DMR and severely hypomethylated CpGs at the secondary MEG3:TSS-DMR. Clin Epigenetics. 2019;11(1):e42. https://doi.org/10.1186/s13148-019-0640-2
14. Li C., Lu W., Yang L., Li Z., Zhou X., Guo R., Wang J., … Wang W., Huang X., Li Y., Gao S., Hu R. MKRN3 regulates the epigenetic switch of mammalian puberty via ubiquitination of MBD3. Natl Sci Rev. 2020;7(3):671-685. https://doi.org/10.1093/nsr/nwaa023
15. Li C., Han T., Li Q., Zhang M., Guo R., Yang Y., Lu W., … Zhou V., Han Z., Li H., Wang F., Hu R. MKRN3-mediated ubiquitination of Poly(A)-binding proteins modulates the stability and translation of GNRH1 mRNA in mammalian puberty. Nucleic Acids Res. 2021; 49(7):3796-3813. https://doi.org/10.1093/nar/gkab155
16. Li L.C., Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18(11):1427-1431. https://doi.org/10.1093/bio informatics/18.11.1427
17. Lomniczi A., Wright H., Castellano J.M., Matagne V., Toro C.A., Ramaswamy S., Plant T.M., Ojeda S.R. Epigenetic regulation of puberty via zinc finger protein-mediated transcriptional repression. Nat Commun. 2015;6:e10195. https://doi.org/10.1038/ncomms10195
18. Macedo D.B., Kaiser U.B. DLK1, Notch signaling and the timing of puberty. Semin Reprod Med. 2019;37(4):174-181. https://doi.org/10.1055/s-0039-3400963
19. Mackay D.J.G., Gazdagh G., Monk D., Brioude F., Giabicani E., Krzyzewska I.M., Kalish J.M., … Russo S., Tannorella P., Temple K.I., Õunap K., Tümer Z. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis. Clin Epigenetics. 2024;16:99. https://doi.org/10.1186/s13148-024-01713-y
20. Micangeli G., Paparella R., Tarani F., Menghi M., Ferraguti G., Carlomagno F., Spaziani M., Pucarelli I., Greco A., Fiore M. Clinical management and therapy of precocious puberty in the Sapienza university pediatrics hospital of Rome, Italy. Children (Basel). 2023; 10(10):e1672. https://doi.org/10.3390/children10101672
21. Monteagudo-Sánchez A., Hernandez M.J.R., Simon C., Burton A., Tenorio J., Lapunzina P., Clark S., … Kelsey G., López-Siguero J.P., de Nanclares G.P., Torres-Padilla M.E., Monk D. The role of ZFP57 and additional KRAB-zinc finger proteins in the maintenance of human imprinted methylation and multi-locus imprinting disturbances. Nucleic Acids Res. 2020;48(20):11394-11407. https://doi.org/10.1093/nar/gkaa837
22. Narusawa H., Ogawa T., Yagasaki H., Nagasaki K., Urakawa T., Saito T., Soneda S., … Naiki Y., Horikawa R., Ogata T., Fukami M., Kagami M. Comprehensive study on central precocious puberty: molecular and clinical analyses in 90 patients. J Clin Endocrinol Metab. 2024;26:e666. https://doi.org/10.1210/clinem/dgae666
23. Nicoara D.M., Scutca A.C., Mang N., Juganaru I., Munteanu A.I., Vitan L., Mărginean O. Central precocious puberty in Prader-Willi syndrome: a narrative review. Front Endocrinol (Lausanne). 2023; 14:e1150323. https://doi.org/10.3389/fendo.2023.1150323
24. Okae H., Chiba H., Hiura H., Hamada H., Sato A., Utsunomiya T., Kikuchi H., Yoshida H., Tanaka A., Suyama M., Arima T. Genomewide analysis of DNA methylation dynamics during early human development. PLoS Genet. 2014;10:e1004868. https://doi.org/10.1371/journal.pgen.1004868
25. Peterkova V.A., Alimova I.L., Bashnina E.B., Bezlepkina O.B., Bolotova N.V., Zubkova N.A., Kalinchenko N.Yu., … Maliev skiy O.A., Orlova E.M., Petryaykina E.E., Samsonova L.N., Taranushenko T.E. Clinical guidelines “Precocious puberty”. Problemy Endocrinologii = Problems of Endocrinology. 2021;67(5):84-103. https://doi.org/10.14341/probl12821 (in Russian)
26. Roberts S.A., Kaiser U.B. Genetic etiologies of central precocious puberty and the role of imprinted genes. Eur J Endocrinol. 2020; 183(4):107-117. https://doi.org/10.1530/EJE-20-0103
27. Sazhenova E.A., Vasilyev S.A., Rychkova L.V., Khramova E.E., Lebedev I.N. Genetics and epigenetics of precocious puberty. Russ J Genet. 2023;59(12):1277-1287. https://doi.org/10.1134/S1022795423120104
28. Shim Y.S., Lee H.S., Hwang J.S. Genetic factors in precocious puberty. Clin Exp Pediatr. 2022;65(4):172-181. https://doi.org/10.3345/cep.2021.00521
29. Tucci V., Isles A.R., Kelsey G., Ferguson-Smith A.C. Genomic imprinting and physiological processes in mammals. Cell. 2019;176(5): 952-965. https://doi.org/10.1016/j.cell.2019.01.043