Анализ экспрессии микроРНК и днкРНК в висцеральной жировой ткани у лиц с ожирением и без ожирения
https://doi.org/10.18699/vjgb-25-48
Аннотация
Длинные некодирующие РНК (lncRNA) и микроРНК (miRNA) играют важную роль во всех биологических процессах, включая адипогенез, липидный обмен и инсулиновый ответ. Анализ экспрессии lncRNA и miRNA в висцеральной жировой ткани человека может способствовать более глубокому пониманию их роли в развитии метаболических нарушений. Исследование направлено на изучение уровней экспрессии lncRNA (ASMER1, SNHG9, P5549, P19461 и GAS5) и miRNA (miR-26A, miR-222, miR-221 и miR-155) в висцеральной жировой ткани у людей с абдоминальным ожирением (n = 70) по сравнению с уровнями их экспрессии у лиц без абдоминального ожирения (n = 31) методом количественной ПЦР в реальном времени. Среди протестированных miRNA уровень экспрессии miR-26A был снижен в висцеральной жировой ткани у людей с ожирением. Среди изученных lncRNA GAS5 показал значительное повышение уровня экспрессии у пациентов с ожирением и сахарным диабетом 2-го типа (СД2) (n = 10) по сравнению с лицами с ожирением без СД2 (n = 60). Уровни экспрессии GAS5 показали слабую отрицательную корреляцию (p < 0.05, rs = 0.25) с уровнями miR-155 только у пациентов с ожирением. Положительная корреляция (p < 0.01, rs = 0.92) между SNHG9 и GAS5 была обнаружена в группе людей без ожирения, с уменьшением коэффициента корреляции у пациентов с ожирением (p < 0.01, rs = 0.67). Кроме того, уровни miR- 26A и miR-155 умеренно коррелировали в группе без ожирения (p < 0.05, rs = 0.47) и демонстрировали слабую корреляцию у пациентов с ожирением (p < 0.05, rs = 0.26). Наши результаты показали, что у пациентов с абдоминальным ожирением наблюдаются повышенные уровни экспрессии miR- 26A в висцеральной жировой ткани и слабая корреляция между экспрессией GAS5 и SNHG9 по сравнению с лицами без абдоминального ожирения.
Ключевые слова
Об авторах
А. БейркдарРоссия
Новосибирск
Д. Е. Иванощук
Россия
Новосибирск
О. В. Тузовская
Россия
Новосибирск
Н. С. Широкова
Россия
Новосибирск
Е. В. Каштанова
Россия
Новосибирск
Я. В. Полонская
Россия
Новосибирск
Ю. И. Рагино
Россия
Новосибирск
Е. В. Шахтшнейдер
Россия
Новосибирск
Список литературы
1. AcharyaA.,BerryD.C.,ZhangH.,JiangY.,JonesB.T.,HammerR.E.,GraffJ.M.,MendellJ.T.miR-26suppressesadipocyteprogenitordifferentiationandfatproductionbytargetingFbxl19. Genes Dev. 2019;33(19-20):1367-1380. doi 10.1101/gad.328955.119
2. AhmadiS.,BoozarpourS.,SabouriH.,GhalandarayeshiS.,BabaeeN.,Lashkarboloki M., Banikarimi S.A. Expression of circulating long non-coding MALAT1 and GAS5 under metformin treatment in type 2 diabetic patients. Gene Rep.2024;35:101905.doi 10.1016/j.genrep.2024.101905
3. AliSyedaZ.,LangdenS.S.S.,MunkhzulC.,LeeM.,SongS.J.Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci. 2020;21(5):1723. doi 10.3390/ijms21051723
4. CabiatiM.,FontaniniM.,GiacomarraM.,PolitanoG.,RandazzoE.,PeroniD.,FedericoG.,DelRyS.Screeningandidentificationofputative long non-coding RNA in childhood obesity: evaluation of their transcriptional levels. Biomedicines. 2022;10(3):529. doi 10.3390/biomedicines10030529
5. Capobianco V., Nardelli C., Ferrigno M., Iaffaldano L., Pilone V.,Fores tieri P., Zambrano N., Sacchetti L. miRNA and protein expressionprofilesofvisceraladiposetissuerevealmiR-141/YWHAGandmiR-520e/RAB11A as two potential miRNA/protein target pairsassociated with severe obesity. J Proteome Res. 2012;11(6):33583369. doi 10.1021/pr300152z
6. CarrieriC.,CimattiL.,BiagioliM.,BeugnetA.,ZucchelliS.,FedeleS.,PesceE.,FerrerI.,CollavinL.,SantoroC.,ForrestA.R.R.,CarninciP.,BiffoS.,StupkaE.,GustincichS.Longnon-codingantisenseRNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature.2012;491(7424):454-457.doi 10.1038/nature11508
7. Chan G.C.K., Than W.H., Kwan B.C.H., Lai K.B., Chan R.C.K.,Teoh J.Y.C., Ng J.K.C., Chow K.M., Cheng P.M.S., Law M.C.,LeungC.B.,LiP.K.T.,SzetoC.C.AdiposeandplasmamicroRNAsmiR-221 and 222 associate with obesity, insulin resistance, and new onset diabetes after peritoneal dialysis. Nutrients.2022;14(22): 4889.doi 10.3390/nu14224889
8. ChenY.,LiK.,ZhangX.,ChenJ.,LiM.,LiuL.Thenovellongnoncoding RNA lncRNA-Adi regulates adipogenesis. Stem Cells Transl Med. 2020;9(9):1053-1067. doi 10.1002/sctm.19-0438
9. CorralA.,AlcalaM.,CarmenDuran-RuizM.,ArrobaA.I.,Ponce-GonzalezJ.G.,TodorčevićM.,SerraD.,Calderon-DominguezM.,Herrero L. Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies. Biochem Pharmacol. 2022;206:115305. doi 10.1016/j.bcp.2022.115305
10. Dedov I.I., Shestakova M.V., Melnichenko G.A., Mazurina N.V.,Andreeva E.N., Bondarenko I.Z., Gusova Z.R., … Troshina E.A., KhamoshinaM.V.,ChechelnitskayaS.M.,ShestakovaE.A.,Sheremet’eva E.V. Interdisciplinary clinical practice guidelines “management of obesity and its comorbidities”. Obesity and Metabolism. 2021;18(1):5-99. doi 10.14341/omet12714 (in Russian)
11. Dexheimer P.J., Cochella L. MicroRNAs: from mechanism to organism. Front Cell Dev Biol.2020;8:409.doi 10.3389/fcell.2020.00409
12. Ebrahimi R., Toolabi K., Jannat Ali Pour N., Mohassel Azadi S., Bahiraee A., Zamani-Garmsiri F., Emamgholipour S. Adipose tissue gene expression of long non-coding RNAs; MALAT1, TUG1 inobesity:isitassociatedwithmetabolicprofileandlipidhomeostasis-related genes expression? Diabetol Metab Syndr. 2020;12(1):36. doi 10.1186/s13098-020-00544-0
13. FawzyM.S.,AbdelghanyA.A.,ToraihE.A.,MohamedA.M.CirculatinglongnoncodingRNAsH19andGAS5areassociatedwithtype2diabetes but not with diabetic retinopathy: a preliminary study. Bosn J Basic Med Sci. 2020;20(3):365-371. doi 10.17305/bjbms.2019.4533
14. FerrerJ.,DimitrovaN.Transcriptionregulationbylongnon-codingRNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol. 2024;25(5):396-415.doi 10.1038/s41580-023-00694-9
15. Gouda W., Ahmed A.E., Mageed L., Hassan A.K., Afify M., HamimyW.I.,RagabH.M.,MaksoudN.A.E.,AllayehA.K.,AbdelmaksoudM.D.E.SignificantroleofsomemiRNAsasbiomarkersfor the degree of obesity. J Genet Eng Biotechnol. 2023;21(1):109. doi 10.1186/s43141-023-00559-w
16. GrossiI.,MarchinaE.,DePetroG.,SalviA.Thebiologicalroleandtranslational implications of the long non-coding RNA GAS5 in breast cancer. Cancers (Basel). 2023;15(13):3318. doi 10.3390/cancers15133318
17. GuoZ.,CaoY.AnlncRNA-miRNA-mRNAceRNAnetworkforadipocytedifferentiationfromhumanadipose-derivedstemcells.Mol Med Rep.2019;19(5):4271-4287.doi 10.3892/mmr.2019.10067
18. Ji J., Zhao L., Zhao X., Li Q.,An Y., Li L., Li D. Genome-wideDNA methylation regulation analysis of long non-coding RNAsin glioblastoma. Int J Mol Med.2020;46(1):224-238.doi 10.3892/ijmm.2020.4579
19. KimN.H.,AhnJ.,ChoiY.M.,SonH.J.,ChoiW.H.,ChoH.J.,YuJ.H.,SeoJ.A.,JangY.J.,JungC.H.,HaT.Y.Differentialcirculatingandvisceral fat microRNA expression of non-obese and obese subjects. Clin Nutr. 2020;39(3):910-916. doi 10.1016/j.clnu.2019.03.033
20. Kolenda T., Ryś M., Guglas K., TeresiakA., Bliźniak R., Mackiewicz J., Lamperska K. Quantification of long non-coding RNAsusing qRT-PCR: comparison of different cDNA synthesis methods and RNA stability. Arch Med Sci.2021;17(4):1006-1015.doi 10.5114/aoms.2019.82639
21. Lhamyani S., Gentile A.-M., Giráldez-Pérez R.M., Feijóo-Cuaresma M., Romero-Zerbo S.Y., Clemente-Postigo M., Zayed H.,Oliva-Olivera W., Bermúdez-Silva F.J., Salas J., Gómez C.L.,HmadchaA., Hajji N., Olveira G., Tinahones F.J., El Bekay R.miR-21 mimic blocks obesity in mice: a novel therapeutic option. Mol Ther Nucleic Acids. 2021;26:401-416. doi 10.1016/j.omtn.2021.06.019
22. LiL.,WeiH.,ZhangY.W.,ZhaoS.,CheG.,WangY.,ChenL.Differential expression of long non-coding RNAs as diagnostic mar kers for lung cancer and other malignant tumors. Aging. 2021;13(20): 23842-23867.doi 10.18632/aging.203523
23. Li W., Notani D., Rosenfeld M.G. Enhancers as non-coding RNAtranscription units: recent insights and future perspectives. Nat Rev Genet.2016;17(4):207-223.doi 10.1038/nrg.2016.4
24. LiuY.,JiY.,LiM.,WangM.,YiX.,YinC.,WangS.,ZhangM.,ZhaoZ.,Xiao Y. Integrated analysis of long noncoding RNA and mRNA expression profile in children with obesity by microarray analysis.Sci Rep. 2018;8(1):8750. doi 10.1038/s41598-018-27113-w
25. LivakK.J.,SchmittgenT.D.Analysisofrelativegeneexpressiondatausingreal-timequantitativePCRandthe2−ΔΔCT method. Methods. 2001;25(4):402-408.doi 10.1006/meth.2001.1262
26. Luo Y., Guo J., Xu P., Gui R. Long non-coding RNA GAS5 maintains insulinsecretionbyregulatingmultiplemiRNAsinINS-1832/13cells. Front Mol Biosci. 2020;7:559267. doi 10.3389/fmolb.2020.559267
27. LustigR.H.,CollierD.,KassotisC.,RoepkeT.A.,KimM.J.,BlancE.,BaroukiR.,BansalA.,CaveM.C.,ChatterjeeS.,ChoudhuryM.,GilbertsonM.,Lagadic-GossmannD.,HowardS.,LindL.,TomlinsonC.R.,VondracekJ.,HeindelJ.J.ObesityI:overviewandmolecular and biochemical mechanisms. Biochem Pharmacol. 2022; 199:115012. doi 10.1016/j.bcp.2022.115012
28. LvY.,WangF.,ShengY.,XiaF.,JinY.,DingG.,WangX.,YuJ.Estrogen supplementation deteriorates visceral adipose function in aged postmenopausal subjects via Gas5 targeting IGF2BP1. Exp Gerontol. 2022;163:111796. doi 10.1016/j.exger.2022.111796
29. MaB.,WangS.,WuW.,ShanP.,ChenY.,MengJ.,XingL.,YunJ.,HaoL.,WangX.,LiS.,GuoY.MechanismsofcircRNA/lncRNAmiRNA interactions and applications in disease and drug research. Biomed Pharmacother. 2023;162:114672. doi 10.1016/j.biopha.2023.114672
30. MameliG.,ArruG.,CaggiuE.,NiegowskaM.,LeoniS.,MadedduG.,Babudieri S., Sechi G.P., Sechi L.A. Natalizumab therapy modulates miR-155, miR-26A and proinflammatory cytokine expression inMS patients. PLoS One. 2016;11(6):e0157153. doi 10.1371/journal.pone.0157153
31. Markovic J., SharmaA.D., BalakrishnanA. MicroRNA-221: a finetuner and potential biomarker of chronic liver injury. Cells. 2020; 9(8):1767. doi 10.3390/cells9081767
32. Mattick J.S., Amaral P.P., Carninci P., Carpenter S., Chang H.Y.,ChenL.-L.,ChenR.,…SpectorD.L.,UlitskyI.,WanY.,WiluszJ.E.,WuM.Longnon-codingRNAs:definitions,functions,challengesand recommendations. Nat Rev Mol Cell Biol.2023;24(6):430-447.doi 10.1038/s41580-022-00566-8
33. Mehta R., Birerdinc A., Hossain N., Afendy A., Chandhoke V., Younossi Z., Baranova A. Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples. BMC Mol Biol. 2010;11(1):39. doi 10.1186/1471-2199-11-39
34. MiaoC.,ZhangG.,XieZ.,ChangJ.MicroRNAsinthepathogenesisof type 2 diabetes: new research progress and future direction. Can J Physiol Pharmacol. 2018;96(2):103-112. doi 10.1139/cjpp-2017-0452
35. MohantyV.,Gokmen-PolarY.,BadveS.,JangaS.C.RoleoflncRNAsin health and disease – size and shape matter. Brief Funct Genomics. 2015;14(2):115-129.doi 10.1093/bfgp/elu034
36. MorrissyA.S.,GriffithM.,MarraM.A.Extensiverelationshipbetweenantisense transcription and alternative splicing in the human genome. Genome Res. 2011;21(8):1203-1212. doi 10.1101/gr.113431.110
37. NicklasB.J.,PenninxB.W.J.H.,RyanA.S.,BermanD.M.,LynchN.A.,DennisK.E.Visceraladiposetissuecutoffsassociatedwithmetabolic risk factors for coronary heart disease in women. Diabetes Care.2003;26(5):1413-1420.doi 10.2337/diacare.26.5.1413
38. Ortega F.J., Mercader J.M., Catalán V., Moreno-Navarrete J.M., Pueyo N., Sabater M., Gómez-Ambrosi J., Anglada R., FernándezFormoso J.A., Ricart W., Frühbeck G., Fernández-Real J.M. Targeting the circulating microRNA signature of obesity. Clin Chem. 2013;59(5):781-792. doi 10.1373/clinchem.2012.195776
39. RagniE.,ColombiniA.,DeLucaP.,LibonatiF.,ViganòM.,PeruccaOrfeiC.,ZagraL.,deGirolamoL.miR-103a-3pandmiR-22-5parereliable reference genes in extracellular vesicles from cartilage, adipose tissue, and bone marrow cells. Front Bioeng Biotechnol. 2021; 9:632440.doi 10.3389/fbioe.2021.632440
40. Rasaei N., Gholami F., Samadi M., Shiraseb F., Khadem A., Yekaninejad M.S., Emamgholipour S., Mirzaei K. The interaction between MALAT1 and TUG1 with dietary fatty acid quality indices onvisceral adiposity index and body adiposity index. Sci Rep.2024; 14(1):12.doi 10.1038/s41598-023-50162-9
41. Reddy K.B. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015; 15(1):38. doi 10.1186/s12935-015-0185-1
42. Rupaimoole R., Slack F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203-222. doi 10.1038/nrd.2016.246
43. Semaev S., Shakhtshneider E., Orlov P., Ivanoshchuk D., Malyutina S., Gafarov V., Ragino Y., Voevoda M. Association of RS708272 (CETPgenevariant)withlipidprofileparametersandtheriskofmyocardial infarction in the white population of Western Siberia. Biomolecules. 2019;9(11):739. doi 10.3390/biom9110739
44. SkårnM.,NamløsH.M.,NoordhuisP.,WangM.-Y.,Meza-ZepedaL.A.,MyklebostO.Adipocytedifferentiationofhumanbonemarrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev. 2012;21(6):873-883. doi 10.1089/scd.2010.0503
45. StatelloL.,GuoC.-J.,ChenL.-L.,HuarteM.Generegulationbylongnon-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96-118. doi 10.1038/s41580-020-00315-9 SuX.,HuangH.,LaiJ.,LinS.,HuangY.LongnoncodingRNAsaspotential diagnostic biomarkers for diabetes mellitus and complications:asystematicreviewandmeta‐analysis.J Diabetes. 2023; 16(2):e13510. doi 10.1111/1753-0407.13510
46. Sufianov A., Beilerli A., Kudriashov V., Ilyasova T., Liang Y.,Mukhamedzyanov A., Bessonova M., Mashkin A., Beylerli O. The role of long non-coding RNAs in the development of adipose cells. Noncoding RNA Res. 2023;8(2):255-262. doi 10.1016/j.ncrna.2023.02.009
47. SunJ.,RuanY.,WangM.,ChenR.,YuN.,SunL.,LiuT.,ChenH.DifferentiallyexpressedcirculatinglncRNAsandmRNAidentifiedby microarray analysis in obese patients. Sci Rep.2016;6(1):35421.doi 10.1038/srep35421
48. Tait S., BaldassarreA., MasottiA., Calura E., Martini P., Varì R.,Scazzocchio B., Gessani S., Del Cornò M. Integrated transcriptome analysis of human visceral adipocytes unravels dysregulated microRNA-long non-coding RNA-mRNA networks in obesity and colorectal cancer. Front Oncol. 2020;10:1089. doi 10.3389/fonc.2020.01089
49. TanL.,XieY.,YuanY.,HuK.LncRNAGAS5asmiR-26A-5pspongeregulatesthePTEN/PI3K/Aktaxisandaffectsextracellularmatrixsynthesis in degenerative nucleus pulposus cells in vitro. Front Neurol.2021;12:653341.doi 10.3389/fneur.2021.653341
50. Tello-Flores V.A., Beltrán-Anaya F.O., Ramírez-Vargas M.A., Esteban-CasalesB.E.,Navarro-TitoN.,Alarcón-RomeroL.D.C.,LucianoVillaC.A.,RamírezM.,DelMoral-HernándezÓ.,Flores-AlfaroE.Role of long non-coding RNAs and the molecular mechanisms involved in insulin resistance. Int J Mol Sci.2021;22(14):7256.doi 10.3390/ijms22147256
51. ValenzuelaP.L.,Carrera-BastosP.,Castillo-GarcíaA.,LiebermanD.E.,Santos-Lozano A., Lucia A. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol.2023;20(7):475-494.doi 10.1038/s41569-023-00847-5
52. Varkonyi-GasicE.,WuR.,WoodM.,WaltonE.F.,HellensR.P.Protocol:ahighlysensitiveRT-PCRmethodfordetectionandquantificationofmicroRNAs.Plant Methods. 2007;3(1):12. doi 10.1186/1746-4811-3-12
53. VeieC.H.B.,NielsenI.M.T.,FriskN.L.S.,DalgaardL.T.Extracellular microRNAs in relation to weight loss – a systematic review and meta-analysis. Noncoding RNA. 2023;9(5):53. doi 10.3390/ncrna9050053
54. Wang X., Guo P., Tian J., Li J., Yan N., Zhao X., Ma Y. LncRNA GAS5 participates in childhood pneumonia by inhibiting cell apoptosis and promoting SHIP-1 expression via downregulating miR-155.BMC Pulm Med. 2021;21(1):362. doi 10.1186/s12890-021-01724-y
55. Winkle M., El-Daly S.M., Fabbri M., Calin G.A. Noncoding RNAtherapeutics – challenges and potential solutions. Nat Rev Drug Discov. 2021;20(8):629-651. doi 10.1038/s41573-021-00219-z
56. YangW.,ZhangK.,LiL.,MaK.,HongB.,GongY.,GongK.Discovery and validation of the prognostic value of the lncRNAs encoding snoRNAs in patients with clear cell renal cell carcinoma. Aging. 2020;12(5):4424-4444.doi 10.18632/aging.102894
57. YumukV.,TsigosC.,FriedM.,SchindlerK.,BusettoL.,MicicD., ToplakH.Europeanguidelinesforobesitymanagementinadults.Obes Facts.2015;8(6):402-424.doi 10.1159/000442721
58. ZatteraleF.,LongoM.,NaderiJ.,RacitiG.A.,DesiderioA.,MieleC.,BeguinotF.Chronicadiposetissueinflammationlinkingobesitytoinsulin resistance and type 2 diabetes. Front Physiol. 2020;10:1607. doi 10.3389/fphys.2019.01607
59. ZengH.,SunW.,RenX.,XiaN.,ZhengS.,XuH.,TianY.,FuX.,Tian J. AP2-microRNA-26a overexpression reduces visceral fat mass and blood lipids. Mol Cell Endocrinol. 2021;528:111217. doi 10.1016/j.mce.2021.111217
60. ZengZ.,LanY.,ChenY.,ZuoF.,GongY.,LuoG.,PengY.,YuanZ.LncRNA GAS5 suppresses inflammatory responses by inhibitingHMGB1releaseviamiR-155-5p/SIRT1axisinsepsis.EurJ Pharmacol.2023;942:175520.doi 10.1016/j.ejphar.2023.175520
61. Zhang J.-J., Ze-Xuan-Zhu, Guang-Min-Xu, Su P., Lei Q., Li W. Comprehensiveanalysisofdifferentialexpressionprofilesoflongnoncoding RNAs with associated co-expression and competing endogenous RNA networks in the hippocampus of patients with Alzheimer’s disease. Curr Alzheimer Res.2021;18(11):884-899.doi 10.2174/1567205018666211202143449
62. ZhangL.,WuH.,ZhaoM.,ChangC.,LuQ.ClinicalsignificanceofmiRNAs in autoimmunity. J Autoimmun. 2020;109:102438. doi 10.1016/j.jaut.2020.102438
63. Zhang M., Zhang Y.-Q., Wei X.-Z., Lee C., Huo D.-S., Wang H.,Zhao Z.-Y. Differentially expressed long-chain noncoding RNAsinhumanneuroblastomacellline(SH-SY5Y):Alzheimer’sdiseasecell model. J Toxicol Environ Health A. 2019;82(19):1052-1060. doi 10.1080/15287394.2019.1687183
64. ZhangT., Liu H., Mao R.,Yang H., ZhangYuanchuan, ZhangYu,GuoP.,ZhanD.,XiangB.,LiuY.ThelncRNARP11-142A22.4promotesadipogenesisbyspongingmiR-587tomodulateWnt5βexpression. Cell Death Dis.2020;11(6):475.doi 10.1038/s41419-020-2550-9
65. ZhongZ.,HouJ.,ZhangQ.,LiB.,LiC.,LiuZ.,YangM.,ZhongW.,Zhao P. Differential expression of circulating long non-codingRNAs in patients with acute myocardial infarction. Medicine. 2018; 97(51):e13066. doi 10.1097/MD.0000000000013066
66. ZucchelliS.,CotellaD.,TakahashiH.,CarrieriC.,CimattiL.,FasoloF.,JonesM.,SblatteroD.,SangesR.,SantoroC.,PersichettiF.,CarninciP.,GustincichS.SINEUPs:anewclassofnaturalandsyntheticantisense long non-coding RNAs that activate translation. RNA Biol. 2015;12(8):771-779. doi 10.1080/15476286.2015.1060395