Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Expression analysis of microRNA and lncRNA in visceral adipose tissue of obese and non-obese individuals

https://doi.org/10.18699/vjgb-25-48

Abstract

Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play important roles in all biological processes,  including adipogenesis, lipid metabolism, and insulin response. Analyzing expression patterns of lncRNAs and miRNAs  in human visceral fat tissue can enhance our understanding of their roles in metabolic disorders. Our research aims to investigate the expression of lncRNAs (ASMER1, SNHG9, P5549, P19461, and GAS5) and miRNAs (miR-26A, miR-222, miR-221, and miR-155) in visceral adipose tissues of individuals with abdominal obesity (n = 70) compared to their le vels in non-obese participants (n = 31), using Real-Time PCR. Among the tested miRNAs, only miR-26A was significantly downregulated in the visceral adipose tissue of obese individuals, with no significant change in the expression of miR- 26A in obese people with or without type 2 diabetes. Similarly, of the tested lncRNAs, only GAS5 showed significantly higher expression levels in obese patients with type 2 diabetes (T2D) (n = 10) compared to obese patients without T2D (n = 60). To test possible interactions between the analyzed non-coding RNAs, we used Spearman’s bivariate correlation test. GAS5 expression levels showed a weak negative correlation (p < 0.05, rs = 0.25) with miR-155 levels in obese patients only. Conversely, a strong positive correlation (p < 0.01, rs = 0.92) between SNHG9 and GAS5 was found in the non-obese group, with a weaker correlation in abdominally obese patients (p < 0.01, rs = 0.67); additionally, miR-26A and miR-155 levels were moderately correlated in the non-obese group (p < 0.05, rs = 0.47) and were found to correlate weakly in obese patients (p < 0.05, rs = 0.26). Our results showed that abdominally obese participants de monstrated higher expression levels of miR-26A in visceral adipose tissue and a significantly lower correlation  between GAS5 and SNHG9 expression when compared to non-obese subjects.

About the Authors

A. Bairqdar
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Department of Genetics, Novosibirsk State University
Russian Federation

Novosibirsk



D. E. Ivanoshchuk
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



O. V. Tuzovskaya
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



N. S. Shirokova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. Kashtanova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



Y. V. Polonskaya
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



Y. I. Ragino
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. V. Shakhtshneider
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Acharya­A.,­Berry­D.C.,­Zhang­H.,­Jiang­Y.,­Jones­B.T.,­Hammer­R.E.,Graff­J.M.,­Mendell­J.T.­miR-26­suppresses­adipocyte­progenitordifferentiation­and­fat­production­by­targeting­Fbxl19. Genes Dev. 2019;33(19-20):1367-1380. doi 10.1101/gad.328955.119

2. Ahmadi­S.,­Boozarpour­S.,­Sabouri­H.,­Ghalandarayeshi­S.,­Babaee­N.,Lashkarboloki M., Banikarimi S.A. Expression of circulating long non-coding MALAT1 and GAS5 under metformin treatment in type 2 diabetic patients. Gene Rep.­2024;35:101905.­doi 10.1016/­j.genrep.2024.101905

3. Ali­Syeda­Z.,­Langden­S.S.S.,­Munkhzul­C.,­Lee­M.,­Song­S.J.­Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci. 2020;21(5):1723. doi 10.3390/ijms21051723

4. Cabiati­M.,­Fontanini­M.,­Giacomarra­M.,­Politano­G.,­Randazzo­E.,Peroni­D.,­Federico­G.,­Del­Ry­S.­Screening­and­identification­ofputative long non-coding RNA in childhood obesity: evaluation of their transcriptional levels. Biomedicines. 2022;10(3):529. doi 10.3390/biomedicines10030529

5. Capobianco­ V.,­ Nardelli­ C.,­ Ferrigno­ M.,­ Iaffaldano­ L.,­ Pilone­ V.,Fores tieri P., Zambrano N., Sacchetti L. miRNA and protein expression­profiles­of­visceral­adipose­tissue­reveal­miR-141/YWHAG­andmiR-520e/RAB11A­ as­ two­ potential­ miRNA/protein­ target­ pairsassociated with severe obesity. J Proteome Res. 2012;11(6):33583369. doi 10.1021/pr300152z

6. Carrieri­C.,­Cimatti­L.,­Biagioli­M.,­Beugnet­A.,­Zucchelli­S.,­Fedele­S.,Pesce­E.,­Ferrer­I.,­Collavin­L.,­Santoro­C.,­Forrest­A.R.R.,­Carninci­P.,­Biffo­S.,­Stupka­E.,­Gustincich­S.­Long­non-coding­antisenseRNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature.­2012;491(7424):454-457.­doi 10.1038/nature11508

7. Chan­ G.C.K.,­ Than­ W.H.,­ Kwan­ B.C.H.,­ Lai­ K.B.,­ Chan­ R.C.K.,Teoh­ J.Y.C.,­ Ng­ J.K.C.,­ Chow­ K.M.,­ Cheng­ P.M.S.,­ Law­ M.C.,Leung­C.B.,­Li­P.K.T.,­Szeto­C.C.­Adipose­and­plasma­microRNAsmiR-221 and 222 associate with obesity, insulin resistance, and new onset diabetes after peritoneal dialysis. Nutrients.­2022;14(22):­ 4889.­doi 10.3390/nu14224889

8. Chen­Y.,­Li­K.,­Zhang­X.,­Chen­J.,­Li­M.,­Liu­L.­The­novel­long­noncoding RNA lncRNA-Adi regulates adipogenesis. Stem Cells Transl Med. 2020;9(9):1053-1067. doi 10.1002/sctm.19-0438

9. Corral­A.,­Alcala­M.,­Carmen­Duran-Ruiz­M.,­Arroba­A.I.,­Ponce-Gonzalez­J.G.,­Todorčević­M.,­Serra­D.,­Calderon-Dominguez­M.,­Herrero L. Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies. Biochem Pharmacol. 2022;206:115305. doi 10.1016/j.bcp.2022.115305

10. Dedov­ I.I.,­ Shestakova­ M.V.,­ Melnichenko­ G.A.,­ Mazurina­ N.V.,Andreeva E.N., Bondarenko I.Z., Gusova Z.R., … Troshina E.A., Khamoshina­M.V.,­Chechelnitskaya­S.M.,­Shestakova­E.A.,­She­remet’eva E.V. Interdisciplinary clinical practice guidelines “management of obesity and its comorbidities”. Obesity and Metabolism. 2021;18(1):5-99. doi 10.14341/omet12714 (in Russian)

11. Dexheimer­ P.J.,­ Cochella­ L.­ MicroRNAs:­ from­ mechanism­ to­ organism. Front Cell Dev Biol.­2020;8:409.­doi 10.3389/fcell.2020.00409

12. Ebrahimi R., Toolabi K., Jannat Ali Pour N., Mohassel Azadi S., Bahiraee A., Zamani-Garmsiri F., Emamgholipour S. Adipose tissue gene­ expression­ of­ long­ non-coding­ RNAs;­ MALAT1,­ TUG1­ inobesity:­is­it­associated­with­metabolic­profile­and­lipid­homeostasis-related genes expression? Diabetol Metab Syndr. 2020;12(1):36. doi 10.1186/s13098-020-00544-0

13. Fawzy­M.S.,­Abdelghany­A.A.,­Toraih­E.A.,­Mohamed­A.M.­Circulating­long­noncoding­RNAs­H19­and­GAS5­are­associated­with­type­2diabetes but not with diabetic retinopathy: a preliminary study. Bosn J Basic Med Sci. 2020;20(3):365-371. doi 10.17305/bjbms.­2019.4533

14. Ferrer­J.,­Dimitrova­N.­Transcription­regulation­by­long­non-codingRNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol. 2024;25(5):396-415.­doi 10.1038/s41580-023-00694-9

15. Gouda­ W.,­ Ahmed­ A.E.,­ Mageed­ L.,­ Hassan­ A.K.,­ Afify­ M.,­ Hamimy­W.I.,­Ragab­H.M.,­Maksoud­N.A.E.,­Allayeh­A.K.,­Abdelmaksoud­M.D.E.­Significant­role­of­some­miRNAs­as­biomarkersfor the degree of obesity. J Genet Eng Biotechnol. 2023;21(1):109. doi 10.1186/s43141-023-00559-w

16. Grossi­I.,­Marchina­E.,­De­Petro­G.,­Salvi­A.­The­biological­role­andtranslational implications of the long non-coding RNA GAS5 in breast cancer. Cancers (Basel). 2023;15(13):3318. doi 10.3390/cancers15133318

17. Guo­Z.,­Cao­Y.­An­lncRNA-miRNA-mRNA­ceRNA­network­for­adipocyte­differentiation­from­human­adipose-derived­stem­cells.­Mol Med Rep.­2019;19(5):4271-4287.­doi 10.3892/mmr.2019.10067

18. Ji­ J.,­ Zhao­ L.,­ Zhao­ X.,­ Li­ Q.,­An­ Y.,­ Li­ L.,­ Li­ D.­ Genome-wideDNA­ methylation­ regulation­ analysis­ of­ long­ non-coding­ RNAsin glioblastoma. Int J Mol Med.­2020;46(1):224-238.­doi 10.3892/ijmm.2020.4579

19. Kim­N.H.,­Ahn­J.,­Choi­Y.M.,­Son­H.J.,­Choi­W.H.,­Cho­H.J.,­Yu­J.H.,Seo­J.A.,­Jang­Y.J.,­Jung­C.H.,­Ha­T.Y.­Differential­circulating­andvisceral fat microRNA expression of non-obese and obese subjects. Clin Nutr. 2020;39(3):910-916. doi 10.1016/j.clnu.2019.03.033

20. Kolenda­ T.,­ Ryś­ M.,­ Guglas­ K.,­ Teresiak­A.,­ Bliźniak­ R.,­ Mackiewicz­ J.,­ Lamperska­ K.­ Quantification­ of­ long­ non-coding­ RNAs­using­ qRT-PCR:­ comparison­ of­ different­ cDNA­ synthesis­ methods and RNA stability. Arch Med Sci.­2021;17(4):1006-1015.­doi 10.5114/aoms.2019.82639

21. Lhamyani­ S.,­ Gentile­ A.-M.,­ Giráldez-Pérez­ R.M.,­ Feijóo-Cuaresma­ M.,­ Romero-Zerbo­ S.Y.,­ Clemente-Postigo­ M.,­ Zayed­ H.,Oliva-Olivera­ W.,­ Bermúdez-Silva­ F.J.,­ Salas­ J.,­ Gómez­ C.L.,Hmadcha­A.,­ Hajji­ N.,­ Olveira­ G.,­ Tinahones­ F.J.,­ El­ Bekay­ R.miR-21 mimic blocks obesity in mice: a novel therapeutic option. Mol Ther Nucleic Acids.­ 2021;26:401-416.­ doi 10.1016/j.omtn.2021.06.019

22. Li­L.,­Wei­H.,­Zhang­Y.W.,­Zhao­S.,­Che­G.,­Wang­Y.,­Chen­L.­Differential expression of long non-coding RNAs as diagnostic mar kers for lung cancer and other malignant tumors. Aging. 2021;13(20): 23842-23867.­doi 10.18632/aging.203523

23. Li­ W.,­ Notani­ D.,­ Rosenfeld­ M.G.­ Enhancers­ as­ non-coding­ RNAtranscription units: recent insights and future perspectives. Nat Rev Genet.­2016;17(4):207-223.­doi 10.1038/nrg.2016.4

24. Liu­Y.,­Ji­Y.,­Li­M.,­Wang­M.,­Yi­X.,­Yin­C.,­Wang­S.,­Zhang­M.,­Zhao­Z.,Xiao Y. Integrated analysis of long noncoding RNA and mRNA expression­ profile­ in­ children­ with­ obesity­ by­ microarray­ analysis.Sci Rep. 2018;8(1):8750. doi 10.1038/s41598-018-27113-w

25. Livak­K.J.,­Schmittgen­T.D.­Analysis­of­relative­gene­expression­datausing­real-time­quantitative­PCR­and­the­2−ΔΔCT method. Methods. 2001;25(4):402-408.­doi 10.1006/meth.2001.1262

26. Luo Y., Guo J., Xu P., Gui R. Long non-coding RNA GAS5 maintains insulin­secretion­by­regulating­multiple­miRNAs­in­INS-1­832/13cells. Front Mol Biosci. 2020;7:559267. doi 10.3389/fmolb.2020.559267

27. Lustig­R.H.,­Collier­D.,­Kassotis­C.,­Roepke­T.A.,­Kim­M.J.,­Blanc­E.,Barouki­R.,­Bansal­A.,­Cave­M.C.,­Chatterjee­S.,­Choudhury­M.,Gilbertson­M.,­Lagadic-Gossmann­D.,­Howard­S.,­Lind­L.,­Tomlinson­C.R.,­Vondracek­J.,­Heindel­J.J.­Obesity­I:­overview­and­molecular and biochemical mechanisms. Biochem Pharmacol. 2022; 199:115012. doi 10.1016/j.bcp.2022.115012

28. Lv­Y.,­Wang­F.,­Sheng­Y.,­Xia­F.,­Jin­Y.,­Ding­G.,­Wang­X.,­Yu­J.­Estrogen supplementation deteriorates visceral adipose function in aged postmenopausal subjects via Gas5 targeting IGF2BP1. Exp Gerontol. 2022;163:111796. doi 10.1016/j.exger.2022.111796

29. Ma­B.,­Wang­S.,­Wu­W.,­Shan­P.,­Chen­Y.,­Meng­J.,­Xing­L.,­Yun­J.,Hao­L.,­Wang­X.,­Li­S.,­Guo­Y.­Mechanisms­of­circRNA/lncRNAmiRNA interactions and applications in disease and drug research. Biomed Pharmacother.­ 2023;162:114672.­ doi 10.1016/j.biopha.­2023.114672

30. Mameli­G.,­Arru­G.,­Caggiu­E.,­Niegowska­M.,­Leoni­S.,­Madeddu­G.,Babudieri S., Sechi G.P., Sechi L.A. Natalizumab therapy modulates miR-155,­ miR-26A­ and­ proinflammatory­ cytokine­ expression­ inMS patients. PLoS One. 2016;11(6):e0157153. doi 10.1371/journal.pone.0157153

31. Markovic­ J.,­ Sharma­A.D.,­ Balakrishnan­A.­ MicroRNA-221:­ a­ finetuner and potential biomarker of chronic liver injury. Cells. 2020; 9(8):1767. doi 10.3390/cells9081767

32. Mattick­ J.S.,­ Amaral­ P.P.,­ Carninci­ P.,­ Carpenter­ S.,­ Chang­ H.Y.,Chen­L.-L.,­Chen­R.,­…­Spector­D.L.,­Ulitsky­I.,­Wan­Y.,­Wilusz­J.E.,Wu­M.­Long­non-coding­RNAs:­definitions,­functions,­challengesand recommendations. Nat Rev Mol Cell Biol.­2023;24(6):430-447.doi 10.1038/s41580-022-00566-8

33. Mehta­ R.,­ Birerdinc­ A.,­ Hossain­ N.,­ Afendy­ A.,­ Chandhoke­ V., Younossi Z., Baranova A. Validation of endogenous reference genes for­ qRT-PCR­ analysis­ of­ human­ visceral­ adipose­ samples.­ BMC Mol Biol. 2010;11(1):39. doi 10.1186/1471-2199-11-39

34. Miao­C.,­Zhang­G.,­Xie­Z.,­Chang­J.­MicroRNAs­in­the­pathogenesisof type 2 diabetes: new research progress and future direction. Can J Physiol Pharmacol. 2018;96(2):103-112. doi 10.1139/cjpp-2017-0452

35. Mohanty­V.,­Gokmen-Polar­Y.,­Badve­S.,­Janga­S.C.­Role­of­lncRNAsin health and disease – size and shape matter. Brief Funct Genomics. 2015;14(2):115-129.­doi 10.1093/bfgp/elu034

36. Morrissy­A.S.,­Griffith­M.,­Marra­M.A.­Extensive­relationship­betweenantisense transcription and alternative splicing in the human genome. Genome Res. 2011;21(8):1203-1212. doi 10.1101/gr.113431.110

37. Nicklas­B.J.,­Penninx­B.W.J.H.,­Ryan­A.S.,­Berman­D.M.,­Lynch­N.A.,Dennis­K.E.­Visceral­adipose­tissue­cutoffs­associated­with­metabolic risk factors for coronary heart disease in women. Diabetes Care.­2003;26(5):1413-1420.­doi 10.2337/diacare.26.5.1413

38. Ortega­ F.J.,­ Mercader­ J.M.,­ Catalán­ V.,­ Moreno-Navarrete­ J.M.,­ Pueyo N., Sabater M., Gómez-Ambrosi J., Anglada R., FernándezFormoso J.A., Ricart W., Frühbeck G., Fernández-Real J.M. Targeting the circulating microRNA signature of obesity. Clin Chem. 2013;59(5):781-792. doi 10.1373/clinchem.2012.195776

39. Ragni­E.,­Colombini­A.,­De­Luca­P.,­Libonati­F.,­Viganò­M.,­PeruccaOrfei­C.,­Zagra­L.,­de­Girolamo­L.­miR-103a-3p­and­miR-22-5p­arereliable reference genes in extracellular vesicles from cartilage, adipose tissue, and bone marrow cells. Front Bioeng Biotechnol. 2021; 9:632440.­doi 10.3389/fbioe.2021.632440

40. Rasaei N., Gholami F., Samadi M., Shiraseb F., Khadem A., Yekaninejad M.S., Emamgholipour S., Mirzaei K. The interaction between MALAT1­ and­ TUG1­ with­ dietary­ fatty­ acid­ quality­ indices­ onvisceral adiposity index and body adiposity index. Sci Rep.­2024;­ 14(1):12.­doi 10.1038/s41598-023-50162-9

41. Reddy K.B. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015; 15(1):38. doi 10.1186/s12935-015-0185-1

42. Rupaimoole R., Slack F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203-222. doi 10.1038/nrd.2016.246

43. Semaev­ S.,­ Shakhtshneider­ E.,­ Orlov­ P.,­ Ivanoshchuk­ D.,­ Malyutina S., Gafarov V., Ragino Y., Voevoda M. Association of RS708272 (CETP­gene­variant)­with­lipid­profile­parameters­and­the­risk­ofmyocardial infarction in the white population of Western Siberia. Biomolecules. 2019;9(11):739. doi 10.3390/biom9110739

44. Skårn­M.,­Namløs­H.M.,­Noordhuis­P.,­Wang­M.-Y.,­Meza-Zepeda­L.A.,Myklebost­O.­Adipocyte­differentiation­of­human­bone­marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev. 2012;21(6):873-883. doi 10.1089/scd.2010.0503

45. Statello­L.,­Guo­C.-J.,­Chen­L.-L.,­Huarte­M.­Gene­regulation­by­longnon-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96-118. doi 10.1038/s41580-020-00315-9 Su­X.,­Huang­H.,­Lai­J.,­Lin­S.,­Huang­Y.­Long­noncoding­RNAs­aspotential diagnostic biomarkers for diabetes mellitus and complications:­a­systematic­review­and­meta‐analysis.­J Diabetes. 2023; 16(2):e13510. doi 10.1111/1753-0407.13510

46. Sufianov­ A.,­ Beilerli­ A.,­ Kudriashov­ V.,­ Ilyasova­ T.,­ Liang­ Y.,Mukhamedzyanov A., Bessonova M., Mashkin A., Beylerli O. The role of long non-coding RNAs in the development of adipose cells. Noncoding RNA Res. 2023;8(2):255-262. doi 10.1016/j.ncrna.2023.02.009

47. Sun­J.,­Ruan­Y.,­Wang­M.,­Chen­R.,­Yu­N.,­Sun­L.,­Liu­T.,­Chen­H.Differentially­expressed­circulating­lncRNAs­and­mRNA­identifiedby microarray analysis in obese patients. Sci Rep.­2016;6(1):35421.doi 10.1038/srep35421

48. Tait­ S.,­ Baldassarre­A.,­ Masotti­A.,­ Calura­ E.,­ Martini­ P.,­ Varì­ R.,Scazzocchio­ B.,­ Gessani­ S.,­ Del­ Cornò­ M.­ Integrated­ transcriptome analysis of human visceral adipocytes unravels dysregulated microRNA-long non-coding RNA-mRNA networks in obesity and colorectal cancer. Front Oncol. 2020;10:1089. doi 10.3389/fonc.2020.01089

49. Tan­L.,­Xie­Y.,­Yuan­Y.,­Hu­K.­LncRNA­GAS5­as­miR-26A-5p­spongeregulates­the­PTEN/PI3K/Akt­axis­and­affects­extracellular­matrixsynthesis in degenerative nucleus pulposus cells in vitro. Front Neurol.­2021;12:653341.­doi 10.3389/fneur.2021.653341

50. Tello-Flores V.A., Beltrán-Anaya F.O., Ramírez-Vargas M.A., Esteban-Casales­B.E.,­Navarro-Tito­N.,­Alarcón-Romero­L.D.C.,­LucianoVilla­C.A.,­Ramírez­M.,­Del­Moral-Hernández­Ó.,­Flores-Alfaro­E.Role of long non-coding RNAs and the molecular mechanisms involved in insulin resistance. Int J Mol Sci.­2021;22(14):7256.­doi 10.3390/ijms22147256

51. Valenzuela­P.L.,­Carrera-Bastos­P.,­Castillo-García­A.,­Lieberman­D.E.,Santos-Lozano A., Lucia A. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol.­2023;20(7):475-494.­doi 10.1038/s41569-023-00847-5

52. Varkonyi-Gasic­E.,­Wu­R.,­Wood­M.,­Walton­E.F.,­Hellens­R.P.­Protocol:­a­highly­sensitive­RT-PCR­method­for­detection­and­quantification­of­microRNAs.­Plant Methods. 2007;3(1):12. doi 10.1186/­1746-4811-3-12

53. Veie­C.H.B.,­Nielsen­I.M.T.,­Frisk­N.L.S.,­Dalgaard­L.T.­Extracellular microRNAs in relation to weight loss – a systematic review and meta-analysis. Noncoding RNA. 2023;9(5):53. doi 10.3390/ncrna9050053

54. Wang X., Guo P., Tian J., Li J., Yan N., Zhao X., Ma Y. LncRNA GAS5 participates in childhood pneumonia by inhibiting cell apoptosis and­ promoting­ SHIP-1­ expression­ via­ downregulating­ miR-155.BMC Pulm Med. 2021;21(1):362. doi 10.1186/s12890-021-01724-y

55. Winkle­ M.,­ El-Daly­ S.M.,­ Fabbri­ M.,­ Calin­ G.A.­ Noncoding­ RNAtherapeutics – challenges and potential solutions. Nat Rev Drug Discov. 2021;20(8):629-651. doi 10.1038/s41573-021-00219-z

56. Yang­W.,­Zhang­K.,­Li­L.,­Ma­K.,­Hong­B.,­Gong­Y.,­Gong­K.­Discovery and validation of the prognostic value of the lncRNAs encoding snoRNAs in patients with clear cell renal cell carcinoma. Aging. 2020;12(5):4424-4444.­doi 10.18632/aging.102894

57. Yumuk­V.,­Tsigos­C.,­Fried­M.,­Schindler­K.,­Busetto­L.,­Micic­D.,­ ­Toplak­H.­European­guidelines­for­obesity­management­in­adults.Obes Facts.­2015;8(6):402-424.­doi 10.1159/000442721

58. Zatterale­F.,­Longo­M.,­Naderi­J.,­Raciti­G.A.,­Desiderio­A.,­Miele­C.,Beguinot­F.­Chronic­adipose­tissue­inflammation­linking­obesity­toinsulin resistance and type 2 diabetes. Front Physiol. 2020;10:1607. doi 10.3389/fphys.2019.01607

59. Zeng­H.,­Sun­W.,­Ren­X.,­Xia­N.,­Zheng­S.,­Xu­H.,­Tian­Y.,­Fu­X.,Tian J. AP2-microRNA-26a overexpression reduces visceral fat mass and blood lipids. Mol Cell Endocrinol. 2021;528:111217. doi 10.1016/j.mce.2021.111217

60. Zeng­Z.,­Lan­Y.,­Chen­Y.,­Zuo­F.,­Gong­Y.,­Luo­G.,­Peng­Y.,­Yuan­Z.LncRNA­ GAS5­ suppresses­ inflammatory­ responses­ by­ inhibitingHMGB1­release­via­miR-155-5p/SIRT1­axis­in­sepsis.­EurJ Pharmacol.­2023;942:175520.­doi 10.1016/j.ejphar.2023.175520

61. Zhang J.-J., Ze-Xuan-Zhu, Guang-Min-Xu, Su P., Lei Q., Li W. Comprehensive­analysis­of­differential­expression­profiles­of­longnoncoding RNAs with associated co-expression and competing endogenous RNA networks in the hippocampus of patients with Alzheimer’s disease. Curr Alzheimer Res.­2021;18(11):884-899.­doi 10.2174/1567205018666211202143449

62. Zhang­L.,­Wu­H.,­Zhao­M.,­Chang­C.,­Lu­Q.­Clinical­significance­ofmiRNAs in autoimmunity. J Autoimmun.­ 2020;109:102438.­ doi 10.1016/j.jaut.2020.102438

63. Zhang­ M.,­ Zhang­ Y.-Q.,­ Wei­ X.-Z.,­ Lee­ C.,­ Huo­ D.-S.,­ Wang­ H.,Zhao­ Z.-Y.­ Differentially­ expressed­ long-chain­ noncoding­ RNAsin­human­neuroblastoma­cell­line­(SH-SY5Y):­Alzheimer’s­diseasecell model. J Toxicol Environ Health A. 2019;82(19):1052-1060. doi 10.1080/15287394.2019.1687183

64. Zhang­T.,­ Liu­ H.,­ Mao­ R.,­Yang­ H.,­ Zhang­Yuanchuan,­ Zhang­Yu,Guo­P.,­Zhan­D.,­Xiang­B.,­Liu­Y.­The­lncRNA­RP11-142A22.4promotes­adipogenesis­by­sponging­miR-587­to­modulate­Wnt5βexpression. Cell Death Dis.­2020;11(6):475.­doi 10.1038/s41419-020-2550-9

65. Zhong­Z.,­Hou­J.,­Zhang­Q.,­Li­B.,­Li­C.,­Liu­Z.,­Yang­M.,­Zhong­W.,Zhao­ P.­ Differential­ expression­ of­ circulating­ long­ non-codingRNAs in patients with acute myocardial infarction. Medicine. 2018; 97(51):e13066. doi 10.1097/MD.0000000000013066

66. Zucchelli­S.,­Cotella­D.,­Takahashi­H.,­Carrieri­C.,­Cimatti­L.,­Fasolo­F.,Jones­M.,­Sblattero­D.,­Sanges­R.,­Santoro­C.,­Persichetti­F.,­Carninci­P.,­Gustincich­S.­SINEUPs:­a­new­class­of­natural­and­syntheticantisense long non-coding RNAs that activate translation. RNA Biol. 2015;12(8):771-779. doi 10.1080/15476286.2015.1060395


Review

Views: 193


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)