Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Concept of natural genome reconstruction. Part 3. Analysis of changes in the amount of telomeric DNA in colony cells as a new amplified feature that arose during the processing of hematopoietic bone marrow stem cells

https://doi.org/10.18699/vjgb-25-52

Abstract

The induced “recombinogenic situation” in hematopoietic stem cells and the activation of the cell’s reparative systems create the basis for recombination events between fragments of extracellular double-stranded DNA delivered into the cell and chromosomal DNA or other forms of the reparative-recombination process. In mouse and rat model organisms as well as in human bone marrow cells, changes in the amount of telomeric DNA in hematopoietic stem cells were assessed as an indicator of repair and recombination events that have occurred. In all experiments performed, recombinant human angiogenin was used as a comparison factor. Dot blot hybridization showed that in the colony cells obtained from the bone marrow cells of the model organisms as well as from human bone marrow cells treated with a double-stranded DNA preparation, there was a significant increase in the amount of telomeric DNA. Amplification of telomeric DNA in colony cells is not associated with contamination of the original DNA preparation with which the bone marrow cells were treated. Treatment of bone marrow cells with DNA that does not carry telomeric sequences (AluI PCR fragment) does not lead to an increase in the amount of telomeric DNA in the cells of grown colonies. This suggests the participation in the amplification of telomeric DNA of an extrachromosomal DNA template carrying telomeric DNA. It has been established that treatment of bone marrow cells with angiogenin also leads to an increase in telomeric DNA in colony cells. A comparison of the type of colonies with the intensity of hybridization (i. e. the amount of telomeric DNA in the sample) suggests that the increase in the amount of detectable telomeric DNA following treatment with angiogenin and hDNAgr has a fundamentally different origin. Western blot analysis and real-time PCR revealed that the increase in the amount of telomeric DNA following treatment of bone marrow cells with a double-stranded DNA preparation does not correlate with the activity of endogenous/exogenous telomerase. For angiogenin, it has been shown that an increase in the amount of telomeric DNA may be the result of activation of endogenous telomerase activity. A principle has been developed for the amplification of a new genetic trait that came into hematopoietic stem cells with extracellular double-stranded DNA material and was fixed in the recipient genome or was transitively present in the cell as new genetic information.

About the Authors

V. S. Ruzanova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



S. G. Oshikhmina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



G. S. Ritter
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. V. Dolgova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



S. S. Kirikovich
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. V. Levites
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



Y. R. Efremov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



T. V. Karamysheva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. G. Bogomolov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



M. I. Meschaninova
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. L. Mamaev
Laboratory Angiopharm LLC
Russian Federation

Novosibirsk



O. S. Taranov
State Scientific Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region



S. V. Sidorov
Novosibirsk State University; City Clinical Hospital No. 1
Russian Federation

Novosibirsk



S. D. Nikonov
Novosibirsk Tuberculosis Research Institute
Russian Federation

Novosibirsk



O. Y. Leplina
Research Institute of Fundamental and Clinical Immunology
Russian Federation

Novosibirsk



A. A. Ostanin
Research Institute of Fundamental and Clinical Immunology
Russian Federation

Novosibirsk



E. R. Chernykh
Research Institute of Fundamental and Clinical Immunology
Russian Federation

Novosibirsk



N. A. Kolchanov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. S. Proskurina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



S. S. Bogachev
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Alanazi A.F.R., Parkinson G.N., Haider S. Structural motifs at the telomeres and their role in regulatory pathways. Biochemistry. 2024; 63(7):827-842. doi 10.1021/acs.biochem.4C00023

2. Cech T.R., Lingner J., Nakamura T., Chapman K.B., Morin G.B., Harley C.B., Andrews W.H. Telomerase reverse transcriptase. Patent WO1998/14592.1998.

3. Cesare A.J., Griffith J.D. Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops. Mol Cell Biol. 2004;24(22):9948-9957. doi 10.1128/MCB.24.22.9948-9957.2004

4. Chan S.W.L., Blackburn E.H. Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining. Mol Cell. 2003;11(5): 1379-1387. doi 10.1016/S1097-2765(03)00174-6

5. Claussin C., Chang M. The many facets of homologous recombination at telomeres. Microb Cell. 2015;2(9):308-321. doi 10.15698/MIC2015.09.224

6. Cromie G.A., Connelly J.C., Leach D.R.F. Recombination at doublestrand breaks and DNA ends: conserved mechanisms from phage tо humans. Mol Cell. 2001;8(6):1163-1174. doi 10.1016/S1097-2765(01)00419-1

7. Dilley R.L., Verma P., Cho N.W., Winters H.D., Wondisford A.R., Greenberg R.A. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature. 2016;539(7627):54-58. doi 10.1038/nature20099

8. Doksani Y. The response to DNA damage at telomeric repeats and its consequences for telomere function. Genes. 2019;10(4):318. doi 10.3390/genes10040318

9. Dolgova E.V., Nikolin V.P., Popova N.A., Proskurina A.S., Orishenko K.E., Alyamkina E.A., Efremov Y.R., … Taranov O.S., Rogachev V.A., Sidorov S.V., Bogachev S.S., Shurdov M.A. Internalization of exogenous DNA into internal compartments of murine bone marrow cells. Russ J Genet Appl Res. 2012;2:440-452. doi 10.1134/S2079059712060056

10. Dolgova E.V., Efremov Y.R., Orishchenko K.E., Andrushkevich O.M., Alyamkina E.A., Proskurina A.S., Bayborodin S.I., … Omigov V.V., Minkevich A.M., Rogachev V.A., Bogachev S.S., Shurdov M.A. Delivery and processing of exogenous double-stranded DNA in mouse CD34+ hematopoietic progenitor cells and their cell cycle changes upon combined treatment with cyclophosphamide and double-stranded DNA. Gene. 2013;528(2):74-83. doi 10.1016/j.gene.2013.06.058

11. Giardini M.A., Segatto M., da Silva M.S., Nunes V.S., Cano M.I.N. Telomere and telomerase biology. Prog Mol Biol Transl Sci. 2014; 125:1-40. doi 10.1016/B978-0-12-397898-1.00001-3

12. Giraud¬Panis M.J., Pisano S., Poulet A., Le Du M.H., Gilson E. Structural identity of telomeric complexes. FEBS Lett. 2010;584(17): 3785-3799. doi 10.1016/j.febslet.2010.08.004

13. Goncalves K.A., Silberstein L., Li S., Severe N., Hu M.G., Yang H., Scadden D.T., Hu G.F. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell. 2016;166(4):894-906. doi 10.1016/j.cell.2016.06.042

14. Hande M.P. DNA repair factors and telomere-chromosome integrity in mammalian cells. Cytogenet Genome Res. 2004;104:116-122. doi 10.1159/000077475

15. Hastings P.J., McGill C., Shafer B., Strathern J.N. Ends-in vs. endsout recombination in yeast. Genetics. 1993;135(4):973-980. doi 10.1093/genetics/135.4.973

16. Henson J.D., Cao Y., Huschtscha L.I., Chang A.C., Au A.Y.M., Pickett H.A., Reddel R.R. DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat Biotechnol. 2009;27(12):1181-1185. doi 10.1038/nbt.1587

17. Jones C.Y., Williams C.L., Moreno S.P., Morris D.K., Mondello C., Karlseder J., Bertuch A.A. Hyperextended telomeres promote formation of C-circle DNA in telomerase positive human cells. J Biol Chem. 2023;299(5):104665. doi 10.1016/j.jbc.2023.104665

18. Langston L.D., Symington L.S. Gene targeting in yeast is initiated by two independent strand invasions. Proc Natl Acad Sci USA. 2004; 101(43):15392-15397. doi 10.1073/pnas.0403748101

19. Lee M., Hills M., Conomos D., Stutz M.D., Dagg R.A., Lau L.M.S., Reddel R.R., Pickett H.A. Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes. Nucleic Acids Res. 2014;42(3):1733-1746. doi 10.1093/nar/gkt1117

20. Li J., Read L.R., Baker M.D. The mechanism of mammalian gene replacement is consistent with the formation of long regions of heteroduplex DNA associated with two crossing-over events. Mol Cell Biol. 2001;21(2):501510. doi 10.1128/MCB.21.2.501-510.2001

21. Likhacheva A.S., Rogachev V.A., Nikolin V.P., Popova N.A., Shilov A.G., Sebeleva T.E., Strunkin D.N., Chernykh E.R., Gel’fgat E.L., Bogachev S.S., Shurdov M.A. Involvement of exogenous DNA in the molecular processes in somatic cell. Informatsionnyy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2008;12(3):426-473 (in Russian)

22. Lingner J., Cech T.R. Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc Natl Acad Sci USA. 1996;93(20):10712-10717. doi 10.1073/PNAS.93.20.10712

23. Loe T.K., Zhou Li J.S., Zhang Y., Azeroglu B., Boddy M.N., Denchi E.L. Telomere length heterogeneity in ALT cells is maintained by PML¬dependent localization of the BTR complex to telomeres. Genes Dev. 2020;34(9-10):650-662. doi 10.1101/gad.333963.119

24. Lu R., Pickett H.A. Telomeric replication stress: the beginning and the end for alternative lengthening of telomeres cancers. Open Biol. 2022;12(3):220011. doi 10.1098/rsob.220011

25. Lu W., Zhang Y., Liu D., Songyang Z., Wan M. Telomeres¬structure, function, and regulation. Exp Cell Res. 2013;319(2):133-141. doi 10.1016/j.yexcr.2012.09.005

26. Lundblad V. Telomere maintenance without telomerase. Oncogene. 2002;21(4):522-531. doi 10.1038/sj.onc.1205079

27. Maizels N., Davis L. Initiation of homologous recombination at DNA nicks. Nucleic Acids Res. 2018;46(14):6962-6973. doi 10.1093/nar/gky588

28. Maniatis T., Fritch E., Sambrook D. Methods of Genetic Engineering. Molecular Cloning. Moscow: Mir Publ., 1984 (in Russian)

29. McEachern M.J., Haber J.E. Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem. 2006;75: 111-135. doi 10.1146/annurev.biochem.74.082803.133234

30. Nabetani A., Ishikawa F. Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. J Biochem. 2011;149(1):5-14. doi 10.1093/jb/mvq119

31. Nandakumar J., Cech T.R. Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol. 2013;14(2):69-82. doi 10.1038/nrm3505

32. Pickett H.A., Cesare A.J., Johnston R.L., Neumann A.A., Reddel R.R. Control of telomere length by a trimming mechanism that involves generation of t-circles. EMBO J. 2009;28(7):799-809. doi 10.1038/emboj.2009.42

33. Potter E.A., Proskurina A.S., Ritter G.S., Dolgova E.V., Nikolin V.P., Popova N.A., Taranov O.S., Efremov Y.R., Bayborodin S.I., Ostanin A.A., Chernykh E.R., Kolchanov N.A., Bogachev S.S. Efficacy of a new cancer treatment strategy based on eradication of tumorinitiating stem cells in a mouse model of Krebs-2 solid adenocarcinoma. Oncotarget. 2018;9(47):28486-28499. doi 10.18632/oncotarget.25503

34. Potter E.A., Dolgova E.V., Proskurina A.S., Ruzanova V.S., Efremov Y.R., Kirikovich S.S., Oshikhmina S.G., … Grivtsova L.U., Kolchanov N.A., Ostanin A.A., Chernykh E.R., Bogachev S.S. Stimulation of mouse hematopoietic stem cells by angiogenin and DNA preparations. Braz J Med Biol Res. 2024;57:e13072. doi 10.1590/1414-431X2024e13072

35. Rovatsos M.T., Marchal J.A., Romero-Fernández I., Fernández F.J., Giagia-Athanosopoulou E.B., Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res. 2011; 19(7):869-882. doi 10.1007/S10577-011-9242-3

36. Rubnitz J., Subramani S. The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol. 1984;4(11):2253-2258. doi 10.1128/mcb.4.11.2253-2258.1984

37. Ruzanova V.S., Oshikhmina S.G., Proskurina A.S., Ritter G.S., Kirikovich S.S., Levites E.V., Efremov Y.R., Karamysheva T.V., Meschaninova M.I., Mamaev A.L., Taranov O.S., Bogachev A.S., Sidorov S.V., Nikonov S.D., Leplina O.Y., Ostanin A.A., Cher nykh E.R., Kolchanov N.A., Dolgova E.V., Bogachev S.S. A concept of natural genome reconstruction. Part 2. Effect of extracellular doublestranded DNA fragments on hematopoietic stem cells. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2024;28(8): 993-1007. doi 10.18699/vjgb-24-106

38. Saini N., Ramakrishnan S., Elango R., Ayyar S., Zhang Y., Deem A., Ira G., Haber J.E., Lobachev K.S., Malkova A. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature. 2013;502(7471):389-392. doi 10.1038/nature12584

39. Sjakste N., Riekstiņa U. DNA damage and repair in differentiation of stem cells and cells of connective cell lineages: a trigger or a complication? Eur J Histochem. 2021;65(2):3236. doi 10.4081/ejh.2021.3236

40. Soman A., Korolev N., Nordenskiöld L. Telomeric chromatin structure. Curr Opin Struct Biol. 2022;77:102492. doi 10.1016/J.SBI.2022.102492

41. Vriend L.E.M., Krawczyk P.M. Nick¬initiated homologous recombination: protecting the genome, one strand at a time. DNA repair. 2017;50:1-13. doi 10.1016/j.dnarep.2016.12.005

42. Wang R.C., Smogorzewska A., De Lange T. Homologous recombination generates t-loop-sized deletions at human telomeres. Cell. 2004; 119(3):355-368. doi 10.1016/j.cell.2004.10.011

43. Wilson M.A., Kwon Y., Xu Y., Chung W.H., Chi P., Niu H., Mayle R., Chen X., Malkova A., Sung P., Ira G. Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration. Nature. 2013;502(7471):393-396. doi 10.1038/nature12585

44. Zhang T., Zhang Z., Li F., Hu Q., Liu H., Tang M., Ma W., Huang J., Songyang Z., Rong Y., Zhang S., Chen B.P., Zhao Y. Looping-out mechanism for resolution of replicative stress at telomeres. EMBO Rep. 2017;18(8):1412-1428. doi 10.15252/embr.201643866


Review

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)