Genetic mapping of loci affecting embryogenic callus formation and in vitro regeneration in cereals and leguminous crops
https://doi.org/10.18699/vjgb-25-54
Abstract
Recalcitrance is defined as the inability of plant species or individual genotypes to effectively regenerate and/or to be transformed in in vitro culture, and is the most significant limitation for genome editing of agricultural crops. To develop protocols for genotype-independent transformation and regeneration of cultivated plants, knowledge of the genetic factors that determine recalcitrance in various plant species under in vitro conditions is required. Their search by classical QTL mapping in populations segregating for callus formation efficiency, regeneration, and transformation is considered a complex and labor-intensive process due to a specific nature of the analyzed phenotypes and a strong genotype-environment relationship. The article provides an overview of the methodology, prospects, and most outstanding achievements of “forward” genetics in identifying genetic determinants of recalcitrance in the most popular and at the same time most difficult to work with in vitro cereal and legume crops. Examples of genetic mapping and successful cloning of genes responsible for various aspects of recalcitrance in cereals are discussed. Thus, it was found that the formation of rapidly proliferating type II embryogenic callus in maize is determined by increased expression of the Wox2a gene. The Koshihikari rice variety, popular in Japan, poorly regenerates in vitro due to impaired nitrate metabolism, since it has a low expression level of nitrite reductase (NiR), which converts nitrite into ammonia. Callus browning, which occurs among many plant species and leads to a decrease in regenerative capacity and even to plant death, in rice varieties (Oryza sativa ssp. indica) depends on the expression level of the Browning of Callus1 (BOC1) gene, which encodes the SRO protein (Similar to RCD One), regulating the plant response to oxidative stress. Similar studies on mapping loci for somatic embryogenesis traits in soybean have revealed major QTLs explaining 45 and 26 % of phenotypic variation. Studies on genetic mapping of loci affecting the efficiency of regeneration and embryogenesis in recalcitrant plant species have obvious prospects due to the emergence of annotated reference genomes, high-throughput genotyping and high-resolution genetic maps.
Keywords
About the Authors
E. K. PotokinaRussian Federation
Moscow
A. S. Sushchenko
Russian Federation
Moscow
References
1. Altpeter F., Springer N.M., Bartley L.E., Blechl A.E., Brutnell T.P., Citovsky V., Conrad L.J., Gelvin S.B., Jackson D.P., Kausch A.P., Lemaux P.G., Medford J.I., Orozco-Cárdenas M.L., Tricoli D.M., Van Eck J., Voytas D.F., Walbot V., Wang K., Zhang Z.J., Stewart C.N. Advancing crop transformation in the era of genome editing. Plant Cell. 2016;28(7):1510-1520. doi 10.1105/tpc.16.00196
2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-410. doi 10.1016/S0022-2836(05)80360-2
3. Armstrong C.L., Romero-Severson J., Hodges T.K. Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. Theor Appl Genet. 1992;84(5-6):755-762. doi 10.1007/BF00224181
4. Baker A., Carrier D.J., Schaedler T., Waterham H.R., van Roermund C.W., Theodoulou F.L. Peroxisomal ABC transporters: functions and mechanism. Biochem Soc Trans. 2015;43(5):959-965. doi 10.1042/BST20150127
5. Bekalu Z.E., Panting M., Bæksted Holme I., Brinch-Pedersen H. Opportunities and challenges of in vitro tissue culture systems in the era of crop genome editing. Int J Mol Sci. 2023;24(15):11920. doi 10.3390/ijms241511920
6. Benson E.E. Special symposium: In vitro plant recalcitrance: an introduction. In Vitro Cell Dev Biol Plant. 2000;36:141-148. doi 10.1007/s11627-000-0029-z
7. Boutilier K., Offringa R., Sharma V.K., Kieft H., Ouellet T., Zhang L., Hattori J., Liu C.M., van Lammeren A.A., Miki B.L., Custers J.B., van Lookeren Campagne M.M. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell. 2002;14:1737-1749. doi 10.1105/tpc.001941
8. Chanvivattana Y., Bishopp A., Schubert D., Stock C., Moon Y.H., Sung Z.R., Goodrich J. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development. 2004;131(21): 5263-5276. doi 10.1242/dev.01400
9. Chen F., Yang Y., Luo X., Zhou W., Dai Y., Zheng C., Liu W., Yang W., Shu K. Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress. BMC Plant Biol. 2019;19(1):269. doi 10.1186/s12870-019-1861-4
10. Chen Z., Debernardi J.M., Dubcovsky J., Gallavotti A. Recent advances in crop transformation technologies. Nat Plants. 2022;8(12): 1343-1351. doi 10.1038/s41477-022-01295-8
11. Debernardi J.M., Tricoli D.M., Ercoli M.F., Hayta S., Ronald P., Palatnik J.F., Dubcovsky J. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnol. 2020;38(11):1274-1279. doi 10.1038/s41587-020-0703-0
12. Duncan D.R., Williams M.E., Zehr B.E., Widholm J.M. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta. 1985;165(3):322-332. doi 10.1007/BF00392228
13. Fan M., Xu C., Xu K., Hu Y. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 2012;22(7):1169-1180. doi 10.1038/cr.2012.63
14. Frame B., Main M., Schick R., Wang K. Genetic transformation using maize immature zygotic embryos. In: Thorpe T., Yeung E. (Eds) Plant Embryo Culture. Methods in Molecular Biology. Vol. 710. Humana Press, 2011;327-341. https://doi10.1007/978-1-61737-988-8_22
15. Ge F., Luo X., Huang X., Zhang Y., He X., Liu M., Lin H., Peng H., Li L., Zhang Z., Pan G., Shen Y. Genome-wide analysis of transcription factors involved in maize embryonic callus formation. Physiol Plant. 2016;158(4):452-462. doi 10.1111/ppl.12470
16. Gordon-Kamm W., Spencer T.M., Mangano M.L., Adams T.R., Daines R.J., Start W.G., O’Brien J.V., Chambers S.A., Adams W.R. Jr., Willetts N.G., Rice T.B., Mackey C.J., Krueger R.W., Kausch A.P., Lemaux P.G. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell. 1990;2(7):603-618. doi 10.1105/tpc.2.7.603
17. Green C.E., Phillips R.L. Plant regeneration from tissue cultures of maize. Crop Sci. 1975;15(3):417-421. doi 10.2135/cropsci1975.0011183X001500030040x
18. Hao Q., Zhang L., Yang Y., Shan Z., Zhou X.A. Genome-wide analysis of the WOX gene family and function exploration of GmWOX18 in soybean. Plants. 2019;8(7):215. doi 10.3390/plants8070215
19. He Y., Guo X., Lu R., Niu B., Pasapula V., Hou P., Cai F., Xu Y., Chen F. Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. Plant Cell Tiss Organ Cult. 2009;98:11-17. doi 10.1007/s11240-009-9533-y
20. Hisano H., Sato K. Genomic regions responsible for amenability to Agrobacterium-mediated transformation in barley. Sci Rep. 2016; 6(1):37505. doi 10.1038/srep37505
21. Hisano H., Meints B., Moscou M.J., Cistue L., Echávarri B., Sato K., Hayes P.M. Selection of transformation-efficient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci. Plant Cell Rep. 2017;36(4):611- 620. doi 10.1007/s00299-017-2107-2
22. Jiang Y., Wei X., Zhu M., Zhang X., Jiang Q., Wang Z., Cao Y., An X., Wan X. Developmental regulators in promoting genetic transformation efficiency in maize and other plants. Curr Plant Biol. 2024; 40:100383. doi 10.1016/j.cpb.2024.100383
23. Kamolsukyeunyong W., Dabbhadatta Y., Jaiprasert A., Thunnom B., Poncheewin W., Wanchana S., Ruanjaichon V., Toojinda T., Burns P. Genome-wide association analysis identifies candidate loci for callus induction in rice (Oryza sativa L.). Plants. 2024;13(15):2112. doi 10.3390/plants13152112
24. Kausch A.P., Wang K., Kaeppler H.F., Gordon-Kamm W. Maize transformation: history, progress, and perspectives. Mol Breed. 2021; 41(6):38. doi 10.1007/s11032-021-01225-0
25. Lardon R., Geelen D. Natural variation in plant pluripotency and regeneration. Plants. 2020;9(10):1261. doi 10.3390/plants9101261
26. Lowe B.A., Way M.M., Kumpf J.M., Rout J., Warner D., Johnson R., Armstrong C.L., Spencer M.T., Chomet P.S. Marker assisted breeding for transformability in maize. Mol Breed. 2006;18:229-239. doi 10.1007/s11032-006-9031-4
27. Lowe K., Wu E., Wang N., Hoerster G., Hastings C., Cho M.J., Scelonge C., Lenderts B., Chamberlin M., Cushatt J., Wang L., Ryan L., Khan T., Chow-Yiu J., Hua W., Yu M., Banh J., Bao Z., Brink K., Igo E., Rudrappa B., Shamseer P.M., Bruce W., Newman L., Shen B., Zheng P., Bidney D., Falco C., Register J., Zhao Z.Y., Xu D., Jones T., Gordon-Kamm W. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell. 2016;28(9):1998-2015. doi 10.1105/tpc.16.00124
28. Liu X., Bie X.M., Lin X., Li M., Wang H., Zhang X., Yang Y., Zhang C., Zhang X.S., Xiao J. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nat Plants. 2023;9(6):908-925. doi 10.1038/s41477-023-01406-z
29. Luo D., Shi L., Sun Z., Qi F., Liu H., Xue L., Li X., Liu H., Qu P., Zhao H., Dai X., Dong W., Zheng Z., Huang B., Fu L., Zhang X. Genome-wide association studies of embryogenic callus induction rate in peanut (Arachis hypogaea L.). Genes. 2024;15(2):160. doi 10.3390/genes15020160
30. Maren N.A., Duan H., Da K., Yencho G.C., Ranney T.G., Liu W. Genotype-independent plant transformation. Hortic Res. 2022;9: uhac047. doi 10.1093/hr/uhac047
31. McFarland F.L., Collier R., Walter N., Martinell B., Kaeppler S.M., Kaeppler H.F. A key to totipotency: Wuschel-like homeobox 2a unlocks embryogenic culture response in maize (Zea mays L.). Plant Biotechnol J. 2023;21(9):1860-1872. doi 10.1111/pbi.14098
32. Menz J., Modrzejewski D., Hartung F., Wilhelm R., Sprink T. Genome edited crops touch the market: a view on the global development and regulatory environment. Front Plant Sci. 2020;11:586027. doi 10.3389/fpls.2020.586027
33. Nagle M.F., Yuan J., Kaur D., Ma C., Peremyslova E., Jiang Y., Niño de Rivera A., Jawdy S., Chen J.G., Feng K., Yates T.B., Tuskan G.A., Muchero W., Fuxin L., Strauss S.H. GWAS supported by computer vision identifies large numbers of candidate regulators of in planta regeneration in Populus trichocarpa. G3. 2024;14(4):jkae026. doi 10.1093/g3journal/jkae026
34. Nam J., Matthysse A.G., Gelvin S.B. Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell. 1997;9:317-333. doi 10.1105/tpc.9.3.317
35. Nishimura A., Ashikari M., Lin S., Takashi T., Angeles E.R., Yamamoto T., Matsuoka M., Khush G.S. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA. 2005;102(33):11940-11944. doi 10.1073/pnas.0504220102
36. Nivya V.M., Shah J.M. Recalcitrance to transformation, a hindrance for genome editing of legumes. Front Genome Ed. 2023;5:1247815. doi 10.3389/fgeed.2023.1247815
37. Omidbakhshfard M.A., Proost S., Fujikura U., Mueller-Roeber B. Growth-regulating factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant. 2015;8(7): 998-1010. doi 10.1016/j.molp.2015.01.013
38. Pixley K.V., Falck-Zepeda J.B., Paarlberg R.L., Phillips P.W., SlametLoedin I.H., Dhugga K.S., Campos H., Gutterson N. Genome-edited crops for improved food security of smallholder farmers. Nat Genet. 2022;54(4):364-367. doi 10.1038/s41588-022-01046-7
39. Ricroch A., Clairand P., Harwood W. Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci. 2017;1(2):169-182. doi 10.1042/etls20170085
40. Russell W.A. Registration of B70 and B73 parental lines of maize (Reg. Nos. PL16 and PL17). Crop Sci. 1972;12:721. doi 10.2135/cropsci1972.0011183X001200050085x
41. Salvo S., Cook J., Carlson A.R., Hirsch C.N., Kaeppler S.M., Kaeppler H.F. Genetic fine-mapping of a quantitative trait locus (QTL) associated with embryogenic tissue culture response and plant regeneration ability in maize (Zea mays L.). Plant Genome. 2018; 11(2):170111. doi 10.3835/plantgenome2017.12.0111
42. Song X., Han Y., Teng W., Sun G., Li W. Identification of QTL underlying somatic embryogenesis capacity of immature embryos in soybean (Glycine max (L.) Merr.). Plant Cell Rep. 2010;29(2):125-131. doi 10.1007/s00299-009-0804-1
43. Timonova E.M., Kiseleva A.A., Berezhnaia A.A., Nesterov M.A., Adonina I.G., Kochetov A.V., Salina E.A. Modification of agricultural traits in cultivated varieties of barley and wheat. Ecol Genet. 2023; 21:24-25. doi 10.17816/ecogen568184
44. Xu H., Guo Y., Qiu L., Ran Y. Progress in soybean genetic transformation over the last decade. Front Plant Sci. 2022;13:900318. doi 10.3389/fpls.2022.900318
45. Yang C., Zhao T., Yu D., Gai J. Somatic embryogenesis and plant regeneration in Chinese soybean (Glycine max (L.) Merr.) – impacts of mannitol, abscisic acid, and explant age. In Vitro Cell Dev Biol Plant. 2009;45:180-188. doi 10.1007/s11627-009-9205-y
46. Yang C., Zhao T., Yu D., Gai J. Mapping QTLs for tissue culture response in soybean (Glycine max (L.) Merr.). Mol Cells. 2011; 32(4):337-342. doi 10.1007/s10059-011-0063-1
47. Zhang K., Su J., Xu M., Zhou Z., Zhu X., Ma X., Hou J., Tan L., Zhu Z., Cai H., Liu F., Sun H., Gu P., Li C., Liang Y., Zhao W., Sun C., Fu Y. A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nat Commun. 2020;11(1):443. doi 10.1038/s41467-019-14265-0
48. Zhang Z., Zhao H., Li W., Wu J., Zhou Z., Zhou F., Chen H., Lin Y. Genome-wide association study of callus induction variation to explore the callus formation mechanism of rice. J Integr Plant Biol. 2019;61(11):1134-1150. doi 10.1111/jipb.12759