Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Optimization of technology steps for obtaining white cabbage DH-plants

https://doi.org/10.18699/vjgb-25-55

Abstract

White cabbage is one of the economically important crops among the representatives of the genus Brassica L. To create highly productive F1 hybrids with improved characteristics, the breeders need genetically diverse breeding material, which takes a long time to produce. It is possible to significantly accelerate this stage of breeding by obtaining doubled haploids (DH-plants). The lack of standardized, efficient and reproducible protocols for in vitro cultivation of different plant species, covering several factors and their interactions, often hinders the practical implementation of the method. Plant material, cultivation conditions and composition of nutrient media are determinants of embryogenesis efficiency. As a result of this study, the protocol for obtaining doubled haploids in in vitro culture of isolated microspores was optimized for late maturing white cabbage. The optimal bud size for introduction into in vitro culture varied from 3.5 to 5.0 mm. For the studied genotypes, the combined effect of high-temperature stress at 32 °C for 48 h and pH 5.8 stimulated the highest embryoid yield. The use of 3.5 g/L phytogel as a gelling agent was not effective. The use of flow cytometry allowed for separation of doubled haploids (69.8 %) from haploids (8.4 %), triploids (1.5 %) and tetraploids (20.3 %) at an early stage of development. Molecular genetic analysis with polymorphic microsatellite loci (SSR-analysis) confirmed the haploid origin of the diploid regenerant plants.

About the Authors

A. I. Mineykina
Federal Scientific Vegetable Center
Russian Federation

VNIISSOK, Odintsovo district, Moscow region



K. S. Stebnitskaia
Federal Scientific Vegetable Center
Russian Federation

VNIISSOK, Odintsovo district, Moscow region



M. G. Fomicheva
Federal Scientific Vegetable Center
Russian Federation

VNIISSOK, Odintsovo district, Moscow region



L. L. Bondareva,
Federal Scientific Vegetable Center
Russian Federation

VNIISSOK, Odintsovo district, Moscow region



A. S. Domblides
Federal Scientific Vegetable Center
Russian Federation

VNIISSOK, Odintsovo district, Moscow region



E. A. Domblides
Federal Scientific Vegetable Center
Russian Federation

VNIISSOK, Odintsovo district, Moscow region



References

1. Adamus A., Szklarczyk M., Kiełkowska A. Haploid and doubled haploid plant production in Brassica rapa L. subsp. pekinensis via microspore culture. Methods Mol Biol. 2021;2288:181-199. doi 10.1007/978-1-0716-1335-1_11

2. Alexander M.P. Differential staining of aborted and non-aborted pollen. Stain Technol. 1969;44(3):117-122. doi 10.3109/10520296909063335

3. Ali M.M., Khaleque M.A., Custers J.B.M., Khurram M.M.H. Microspore culture and the performance of microspore derived doubled haploid in Brassica juncea (L.). Bangladesh J Agric. Res. 2008; 33(4):571-578. doi 10.3329/bjar.v33i4.2290

4. Barinova I., Clément C., Martiny L., Baillieul F., Soukupova H., Heberle-Bors E., Touraev A. Regulation of developmental pathways in cultured microspores of tobacco and snapdragon by medium pH. Planta. 2004;219(1):141-146. doi 10.1007/s00425-003-1202-5

5. Barro F., Fernández-Escobar J., De La Vega M., Martín A. Modification of glucosinolate and erucic acid contents in doubled haploid lines of Brassica carinata by UV treatment of isolated microspores. Euphytica. 2003;129(1):1-6. doi 10.1023/A:1021578318098

6. Bhatia R., Dey S.S., Parkash C., Sharma K., Sood S., Kumar R. Modification of important factors for efficient microspore embryogenesis and doubled haploid production in field grown white cabbage (Brassica oleracea var. capitata L.) genotypes in India. Sci Hortic. 2018;233:178-187. doi 10.1016/j.scienta.2018.01.017

7. Cao M.Q., Charlot F., Dore C. Embryogenesis and plant regeneration in sauerkraut cabbage (Brassica oleracea L. subsp. capitata) by in vitro culture of isolated microspores. Comptes Rendus de l’Academie des Sciences Serie III. 1990;310:203-209. doi 10.1007/BF00231964

8. Cordewener J.H.G., Hause G., Görgen E., Busink R., Hause B., Dons H.J.M., Van Lammeren A.A.M., Van Lookeren Campagne M.M., Pechan P. Changes in synthesis and localization of members of the 70-kDa class of heat-shock proteins accompany the induction of embryogenesis in Brassica napus L. microspores. Planta. 1995;196:747-755. doi 10.1007/BF01106770

9. Cousin A., Nelson M.N. Twinned microspore-derived embryos of canola (Brassica napus L.) are genetically identical. Plant Cell Rep. 2009;28(5):831-835. doi 10.1007/s00299-009-0677-3

10. Cristea T.O., Iosob G.A., Brezeanu C., Brezeanu P.M. Effect of chemical composition of nutritive medium and explant size over androgenetic response in microspore culture of Brassica oleracea L. Rev Chim. 2020;71(10):131-136. doi 10.37358/RC.20.10.8357

11. Custers J.B.M., Cordewener J.H.G., Nöllen Y., Dons H.J.M., Van Locke ren Campagne M.M. Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep. 1994;13(5):267-271. doi 10.1007/BF00233317

12. da Silva Dias J.C. Effect of activated charcoal on Brassica oleracea microspore culture embryogenesis. Euphytica. 1999;108:65-69. doi 10.1023/A:1003634030835

13. da Silva Dias J.C. Protocol for broccoli microspore culture. In: Doubled Haploid Production in Crop Plants. Springer Netherlands, 2003; 195-204. doi 10.1007/978-94-017-1293-4_30

14. Diao W.P., Jia Y.Y., Song H., Zhang X.Q., Lou Q.F., Chen J.F. Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenetants using SSR markers. Sci Hortic. 2009; 119(3):246-251. doi 10.1016/j.scienta.2008.08.016

15. Domblides A.S., Bondareva L.L., Pivovarov V.F. Assessment of genetic diversity among headed cabbage (Brassica oleracea L.) accessions by using SSR markers. Sel’skokhozyajstvennaya Biologiya = Agricultural Biology. 2020;55(5):890-900. doi 10.15389/agrobiology.2020.5.890rus (in Russian)

16. Duijs J.G., Voorrips R.E., Visser D.L., Custers J.B.M. Microspore culture is successful in most crop types of Brassica oleracea L. Euphytica. 1992;60:45-55. doi 10.1007/BF00022257

17. Fan Z., Armstrong K.C., Keller W.A. Development of microspores in vivo and in vitro in Brassica napus L. Protoplasma. 1988;147: 191-199. doi 10.1007/BF01403347

18. Ferrie A.M.R., Caswell K.L. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult. 2011;104:301-309. doi 10.1007/s11240-010-9800-y

19. Ferrie A.M.R., Epp D.J., Keller W.A. Evaluation of Brassica rapa L. genotypes for microspore culture response and identification of a highly embryogenic line. Plant Cell Rep. 1995;14(9):580-584. doi 10.1007/BF00231942

20. Gu H.H., Zhou W.J., Hagberg P. High frequency spontaneous production of doubled haploid plants in microspore cultures of Brassica rapa ssp. chinensis. Euphytica. 2003;134:239-245. doi 10.1023/B:EUPH.0000004945.01455.6d

21. Gu H., Zhao Z., Sheng X., Yu H., Wang J. Efficient doubled haploid production in microspore culture of loose-curd cauliflower (Brassica oleracea var. botrytis). Euphytica. 2014;195:467-475. doi 10.1007/s10681-013-1008-x

22. Gyulai G., Gemesne J.A., Sagi Zs., Venczel G., Pinter P., Kristof Z., Torjek O., Heszky L., Bottka S., Kiss J., Zatyko L. Doubled haploid development and PCR-analysis of F1 hybrid derived DH-R2 paprika (Capsicum annuum L.) lines. J Plant Physiol. 2000;156(2):168-174. doi 10.1016/S0176-1617(00)80302-8

23. Hoseini M., Ghadimzadeh M., Ahmadi B., da Silva J.A. Effects of ascorbic acid, alpha-tocopherol, and glutathione on microspore embryogenesis in Brassica napus L. In Vitro Cell Dev Biol Plant. 2014;50:26-35. doi 10.1007/s11627-013-9579-8

24. Huang B., Bird S., Kemble R., Simmonds D., Keller W., Miki B. Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. Topas. Plant Cell Rep. 1990;8(10):594-597. doi 10.1007/BF00270061

25. Ji J., Su H., Cao W., Zhang X., Li H., Fang Z., Yang L., Zhang Ya., Zhuang M., Wang Yo., Taranov V., Lv H. Genetic analysis and mapping of QTLs for isolated microspore embryogenesis in cabbage. Scientia Horticulturae. 2023;313:111897. doi 10.1016/j.scienta.2023.111897

26. Kasha K.J. Chromosome doubling and recovery of doubled haploid plants. In: Don Palmer C., Keller W.A., Kasha K.J. (Eds) Haploids in Crop Improvement II. Biotechnology in Agriculture and Forestry. Vol. 56. Springer, 2005;123-152. doi 10.1007/3-540-26889-8_7

27. Kitashiba H., Taguchi K., Kaneko I., Inaba K., Yokoi S., Takahata Y., Nishio T. Identification of loci associated with embryo yield in microspore culture of Brassica rapa by segregation distortion analysis. Plant Cell Rep. 2016:35(10):2197-2204. doi 10.1007/s00299-016-2029-4. Epub 2016 Jul 20.

28. Kott L.S. Application of doubled haploid technology in breeding of oilseed Brassica napus. AgBiotech News Inf. 1998;10:69N-73N. doi 10.1533/9781908818478.183

29. Kott L.S., Polsoni L., Beversdorf W.D. Cytological aspects of isolated microspore culture of Brassica napus. Can J Bot. 1988;66(8):1658- 1664. doi 10.1139/b88-226

30. Kozar E.V., Domblides E.A., Soldatenko A.V. Embryogenesis of European radish (Raphanus sativus L. subsp. sativus convar. radicula) in culture of isolated microspores in vitro. Plants. 2021;10(10):2117. doi 10.3390/plants10102117

31. Kozar E.V., Kozar E.G., Domblides E.A. Effect of the method of microspore isolation on the efficiency of isolated microspore culture in vitro for Brassicaceae family. Horticulturae. 2022;8(10):864. doi 10.3390/horticulturae8100864

32. Kyo M., Harada H. Control of the developmental pathway of tobacco pollen in vitro. Planta. 1986;168:427-432. doi 10.1007/BF00392260

33. Lichter R. Induction of haploid plants from isolated pollen of Brassica napus. Zeitschrift für Pflanzenphysiologie. 1982;105(5):427-434. doi 10.1016/S0044-328X(82)80040-8

34. Lighter R. Efficient yield of embryoids by culture of isolated microspores of different Brassicaceae species. Plant Breeding. 1989; 103(2):119-123. doi 10.1111/j.1439-0523.1989.tb00359.x

35. Louarn S., Torp A.M., Holme I.B., Andersen S.B., Jensen B.D. Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea. Genet Resour Crop Evol. 2007;54(8):1717-1725. doi 10.1007/s10722-006-9181-6

36. Malik A.A., Cui L., Zhang S., Chen J. Efficiency of SSR markers for determining the origin of melon plantlets derived through unfertilized ovary culture. Hort Sci. 2011;38(1):27-34. doi 10.17221/47/2010-HORTSCI

37. Mineykina A., Bondareva L., Soldatenko A., Domblides E. Androgenesis of red cabbage inisolated microspore culture in vitro. Plants. 2021;10(9):1950. doi 10.3390/plants10091950

38. Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473. doi 10.1111/j.1399-3054.1962.tb08052.x

39. Pechan P.M., Keller W.A. Identification of potentially embryogenic microspores in Brassica napus. Physiol Plant. 1988;74(2):377-384. doi 10.1111/j.1399-3054.1988.tb00646.x

40. Pechan P.M., Smykal P. Androgenesis: affecting the fate of the male gametophyte. Physiol Plant. 2001;111(1):1-8. doi 10.1034/j.1399-3054.2001.1110101.x

41. Prem D., Gupta K., Sarkar G., Agnihotri A. Activated charcoal induced high frequency microspore embryogenesis and efficient doubled haploid production in Brassica juncea. Plant Cell Tissue Organ Cult. 2008;93:269-282. doi 10.1007/s11240-008-9373-1

42. Rodriguez-Serrano M., Bárány I., Prem D., Coronado M.-J., Risueño M.C., Testillano P.S. NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. J Exp Bot. 2012;63(5):2007-2024. doi 10.1093/jxb/err400

43. Rudolf K., Bohanec B., Hansen M. Microspore culture of white cabbage, Brassica oleracea var. capitata L.: genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breed. 1999;118(3):237-241. doi 10.1046/j.1439-0523.1999.118003237.x

44. Shumilina D., Kornyukhin D., Domblides E., Soldatenko A., Artemyeva A. Effects of genotype and culture conditions on microspore embryogenesis and plant regeneration in Brassica rapa ssp. rapa L. Plants. 2020;9(2):278. doi 10.3390/plants9020278

45. Simmonds D.H., Keller W.A. Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus. Planta. 1999;208:383-391. doi 10.1007/s004250050573

46. Su H., Chen G., Yang L., Zhang Y., Wang Y., Fang Z., Lv H. Proteomic variations after short-term heat shock treatment reveal differentially expressed proteins involved in early microspore embryogenesis in cabbage (Brassica oleracea). PeerJ. 2020;8:e8897. doi 10.7717/peerj.8897

47. Takahata Y., Keller W.A. High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Sci. 1991;74(2):235-242. doi 10.1016/0168-9452(91)90051-9

48. Tang X., Liu Y., He Y., Ma L., Sun M. Exine dehiscing induces rape microspore polarity, which results in different daughter cell fate and fixes the apical-basal axis of the embryo. J Exp Bot. 2013;64(1): 215-228. doi 10.1093/jxb/ers327

49. Telmer C.A., Simmonds D.H., Newcomb W. Determination of developmental stage to obtain high frequencies of embryogenic microspores in Brassica napus. Physiol Plant. 1992;84(3):417-424. doi 10.1111/j.1399-3054.1992.tb04685.x

50. Tonguç M., Griffiths P.D. Genetic relationships of Brassica vegetables determined using database derived simple sequence repeats. Euphytica. 2004;137(2):193-201. doi 10.1023/B:EUPH.0000041577.84388.43

51. Touraev A., Pfosser M., Vicente O., Heberle-Bors E. Stress as the major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta. 1996;200:144-152. doi 10.1007/BF00196662

52. Tuncer B., Çğ A., Yanmaz R., Yaşar F. Effect of heat shock treatment on microspore embryogenesis in Brassica oleracea species. J Agric Sci (Belihuloya). 2016;22(4):548-554. doi 10.1501/Tarimbil_0000001413

53. Weber M., Davies J.J., Wittig D., Oakeley E.J., Haase M., Lam W.L., Schuebeler D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37(8):853-862. doi 10.1038/ng1598

54. Winarto B., da Silva J.A.T. Microspore culture protocol for Indonesian Brassica oleracea. Plant Cell Tissue Organ Cult. 2011;107(2): 305-315. doi 10.1007/S11240-011-9981-Z/TABLES/6

55. Yahyaoui E., Germanà M.A. Microspore embryogenesis in Citrus. In: Segui-Simarro J.M. (Ed.) Doubled Haploid Technology. Methods in Molecular Biology. Vol. 2289. New York, NY: Humana, 2021;149-166. doi 10.1007/978-1-0716-1331-3_10

56. Yang S., Liu X., Fu Y., Zhang X., Li Y., Liu Z., Feng H. The effect of culture shaking on microspore embryogenesis and embryonic development in Pakchoi (Brassica rapa L. ssp. chinensis). Sci Hortic. 2013;152:70-73. doi 10.1016/j.scienta.2013.01.019

57. Yuan S., Su Y., Liu Y., Fang Z., Yang L., Zhuang M., Zhang Y., Sun P. Effects of pH, MES, arabinogalactan-proteins on microspore cultures in white cabbage. Plant Cell Tissue Organ Culture. 2012;110(1): 69-76. doi 10.1007/s11240-012-0131-z

58. Zeng A., Yan J., Song L., Gao B., Li J. Effects of ascorbic acid and embryogenic microspore selection on embryogenesis in white cabbage (Brassica oleracea L. var. capitata). J Hortic Sci Biotechnol. 2015;90(6):607-612. doi 10.1080/14620316.2015.11668722

59. Zhang F.L., Aoki S., Takahata Y. RAPD markers linked to microspore embryogenic ability in Brassica crops. Euphytica. 2003;131(2): 207-213. doi 10.1023/A:1023955131523

60. Żur I., Dubas E., Golemiec E., Szechyńska-Hebda M., Gołębiowska G., Wędzony M. Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (x Triticosecale Wittm.). Plant Cell Rep. 2009;28(8):1279-1287. doi 10.1007/s00299-009-0730-2


Review

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)