Устойчивость к засухе фотосинтетического аппарата линий пшеницы Triticum aestivum L. c интрогрессиями от Aegilops tauschii Coss. в хромосоме 2D
https://doi.org/10.18699/vjgb-25-56
Аннотация
Улучшение эффективности фотосинтеза в изменяющихся климатических условиях является одним из спосо6ов повышения ста6ильности урожая сельскохозяйственных растений. Для этого применяют различные генетические стратегии, в частности маркер-ориентированную селекцию, а также привлекают генетический потенциал диких сородичей пшеницы. Ранее, используя интрогрессивные линии пшеницы, содержащие различные сегменты хромосомы 2D от Aegilops tauschii в генетическом фоне пшеницы Triticum aestivum сорта Чайниз Спринг (ЧС), мы картировали QTL, ассоциированные с вариа6ельностью 6иомассы по6ега и газоо6мена в контрастных условиях водосна6жения. B данной ра6оте путем «дро6ления» первичных интрогрессий мы получили вторичные интрогрессивные линии пшеницы ЧС с 6олее короткими сегментами интрогрессий от Ae. tauschii. Целью исследования 6ыло изучить устойчивость фотосинтетического аппарата к дефициту воды в почве у вторичных интрогрессивных линий, содержащих редуцированные интрогрессии от Ae. tauschii в коротком и длинном плечах хромосомы 2D. Мы оценили размер эффекта засухи на 6иомассу по6ега, параметры газоо6мена, содержание фотосинтетических пигментов, параметры медленной и 6ыстрой флуоресценции хлорофилла и параметры 6ыстрых световых кривых. Результаты показали, что у линии 1004 с участком интрогрессии в хромосоме 2DS, ограниченном микросателлитными локусами Xgwm296 и Xgwm261, засуха незначительно влияла на соотношение хлорофиллы a+b/каротиноиды и первичные процессы фотосинтеза. У линии 1005 с участком интрогрессии в районе маркера Xgwm261 при дефиците воды значительно снижались соотношение хлорофиллы a+b/каротиноиды и показатели функциональной активности фотосистем. У линии 1034 с интрогрессией в хромосоме 2DL в районе локусов Xgwm1419 и Xgwm157 соотношение хлорофиллы a+b/каротиноиды, скорость ассимиляции СO2 и параметры флуоресценции хлорофилла при засухе оставались ста6ильными. У линии 1021 с участком интрогрессии в районе маркера Xgwm539 на этой же хромосоме мы на6людали сильное негативное влияние засухи на скорость ассимиляции СO2 и показатели функциональной активности фотосистем. Маркеры Xgwm1419 и Xgwm296 можно рекомендовать для использования в маркер-ориентированной селекции на засухоустойчивость мягкой пшеницы в случаях, когда донором генетического материала выступает Ae. tauschii.
Об авторах
С. В. ОсиповаРоссия
Иркутск
А. В. Пермяков
Россия
Иркутск
А. В. Рудиковский
Россия
Иркутск
Е. Г. Рудиковская
Россия
Иркутск
Т. А. Пшеничникова
Россия
Новоси6ирск,
Список литературы
1. Botyanszka L., Zivcak M., Chovancek E., Sytar O., Barek V., Hauptvogel P., Halabuk A., Brestic M. Chlorophyll fluorescence kinetics may be useful to identify early drought and irrigation effects on photosynthetic apparatus in field-grown wheat. Agronomy. 2020;10(9): 1275. doi 10.3390/agronomy10091275
2. Chen K., Chen L., Fan J.B., Fu J. Alleviation of heat damage to photosystem II by nitric oxide in tall fescue. Photosynth Res. 2013; 116(1):21-31. doi 10.1007/s11120-013-9883-5
3. Chen M., Ji M., Wen B., Liu L., Li S., Chen X., Gao D., Li L. GOLDEN 2-LIKE transcription factors of plants. Front Plant Sci. 2016;7: 1509. doi 10.3389/fpls.2016.01509
4. Cubas P., Lauter N., Doebley J., Coen E. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 1999;18(2):215-222. doi 10.1046/j.1365-313x.1999.00444.x
5. Danisman S. TCP transcription factors at the interface between environmental challenges and the plant’s growth responses. Front Plant Sci. 2016;7:1930. doi 10.3389/fpls.2016.01930
6. Goltsev V.N., Kalaji H.M., Paunov M., Bąba W., Horaczek T., Moj ski J., Kocie H., Allakhverdiev S.I. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ J Plant Physiol. 2016;63(6):869-893. doi 10.1134/S1021443716050058
7. Hammer Ø., Harper D.A.T., Ryan P.D. PAST: PAleontological STatistics software package for education and data analysis. Palaeontol Electronica. 2001;4(1):1-9. https://palaeo-electronica.org/2001_1/past/past.pdf
8. Hedges L.V., Olkin I. Estimation of a single effect size: parametric and nonparametric methods. In: Statistical Methods for Meta-Analysis. Amsterdam: Elsevier Academic Press, 1985;75-106. doi 10.1016/B978-0-08-057065-5.50010-5
9. Hernández-Verdeja T., Lundgren M.R. GOLDEN2-LIKE transcription factors: a golden ticket to improve crops? Plants People Planet. 2024;6(1):79-93. doi 10.1002/ppp3.10412
10. Hosoda K., Imamura A., Katoh E., Hatta T., Tachiki M., Yamada H., Mizuno T., Yamazaki T. Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. Plant Cell. 2002;14(9):2015-2029. doi 10.1105/tpc.002733
11. Ifuku K., Ido K., Sato F. Molecular functions of PsbP and PsbQ proteins in the photosystem II supercomplex. J Photochem Photobiol B. 2011;104(1-2):158-164. doi 10.1016/j.jphotobiol.2011.02.006
12. IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403):eaar7191. doi 10.1126/science.aar7191
13. Jia J., Zhao S., Kong X., Li Y., Zhao G., He W., Appels R., … Yang H., Liu X., He Z., Mao L., Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496(7443):91-95. doi 10.1038/nature12028
14. Ma F., Li R., Guo G., Nie F., Zhu L., Liu W., Lyu L., Bai S., Zhao X., Li Z., Zhang D., Li H., Li S., Zhou Y., Song C.-P. Introgression of QTL from Aegilops tauschii enhances yield-related traits in common wheat. Crop J. 2023;11(5):1521-1532. doi 10.1016/j.cj.2023.05.001
15. McFadden E.S., Sears E.R. The origin of Triticum spelta and its free threshing hexaploid relative. J Hered. 1946;37(3):81-89. doi 10.1093/oxfordjournals.jhered.a105590
16. Nicholson P., Rezannor H.N., Worland A.J. Chromosomal location of resistance to Septoria nodorum in a synthetic hexaploid wheat determined by the study of chromosomal substitution lines in ‘Chinese Spring’ wheat. Plant Breed. 1993;110(3):177-184. doi 10.1111/j.1439-0523.1993.tb00575.x
17. Nyine M., Adhikari E., Clinesmith M., Aiken R., Betzen B., Wang W., Davidson D., Yu Z., Guo Y., He F., Akhunova A., Jordan K.W., Fritz A.K., Akhunov E. The haplotype-based analysis of Aegilops tauschii introgression into hard red winter wheat and its impact on productivity traits. Front Plant Sci. 2021;12:716955. doi 10.3389/fpls.2021.716955
18. Ohama N., Yanagisawa S. Role of GARP family transcription factors in the regulatory network for nitrogen and phosphorus acquisition. J Plant Res. 2024;137(3):331-341. doi 10.1007/s10265-023-01513-0
19. Osipova S., Permyakov A., Permyakova M., Pshenichnikova T., Verkhoturov V., Rudikovsky A., Rudikovskaya E., Shishparenok A., Doroshkov A., Börner A. Regions of the bread wheat D genome associated with variation in key photosynthesis traits and shoot biomass under both well-watered and water deficient conditions. J Appl Genet. 2016;57:151-163. doi 10.1007/s13353-015-0315-4
20. Osipova S., Permyakov A., Konstantinov D., Shchukina L., Rudikovskaya E., Permyakova M., Pshenichnikova T. Variability of photosynthesis parameters and yield in recombinant lines of bread wheat with introgressions from Triticum timopheevii into 2A chromosome under different water supply conditions. Cereal Res Commun. 2023; 52:101-113. doi 10.1007/s42976-023-00372-8
21. Оsipova S.V., Rudikovskii A.V., Permyakov A.V., Rudikovskaya E.G., Pomortsev A.V., Мusalevskaya O.V., Pshenichnikova T.A. Using chlorophyll fluorescence parameters and antioxidant enzyme activity to assess drought tolerance of spring wheat. Photosynthetica. 2024;62(2):147-157. doi 10.32615/ps.2024.014
22. Peršić V., Ament A., Antunović Dunić J., Drezner G., Cesar V. PEGinduced physiological drought for screening winter wheat genotypes sensitivity – integrated biochemical and chlorophyll a fluorescence analysis. Front Plant Sci. 2022;13:987702. doi 10.3389/fpls.2022.987702
23. Pestsova E.G., Börner A., Röder M.S. Development of a set of Triticum aestivum-Aegilops tauschii introgression lines. Hereditas. 2001; 135(2-3):139-143. doi 10.1111/j.1601-5223.2001.00139.x
24. Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet. 1995;91:1001-1007. doi 10.1007/BF00223912
25. Pour-Aboughadareh A., Kianersi F., Poczai P., Moradkhani H. Potential of wild relatives of wheat: ideal genetic resources for future breeding programs. Agronomy. 2021;11(8):1656. doi 10.3390/agronomy11081656
26. Przewieslik-Allen A.M., Burridge A.J., Wilkinson P.A., Winfield M.O., Shaw D.S., McAusland L., King J., King I.P., Edwards K.J., Barker G.L.A. Developing a high-throughput SNP-based marker system to facilitate the introgression of traits from Aegilops species into bread wheat (Triticum aestivum). Front Plant Sci. 2019;9:1993. doi 10.3389/fpls.2018.01993
27. Reynolds M., Foulkes J., Furbank R., Griffiths S., King J., Murchie E., Parry M., Slaffer G. Achieving yield gains in wheat. Plant Cell Environ. 2012;35(10):1799-1823. doi 10.1111/j.1365-3040.2012.02588.x
28. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. A microsatellite map of wheat. Genetics. 1998;149(4):2007-2023. doi 10.1093/genetics/149.4.2007
29. Srivastava A., Biswas S., Yadav S., Kumar A., Rajaram H., Srivastava V., Mishra Y. Physiological and thylakoid proteome analyses of Anabaena sp. PCC 7120 for monitoring the photosynthetic responses under cadmium stress. Algal Res. 2021;54:102225. doi 10.1016/j.algal.2021.102225
30. Wettstein D. Chlorophyll-letale und der submikroskopische form wechsel der plastiden. Exp Cell Res. 1957;12(3):427-506. doi 10.1016/0014-4827(57)90165-9
31. Yoo C.Y., Hasegawa P.M., Mickelbart M.V. Regulation of stomatal density by the GTL1 transcription factor for improving water use efficiency. Plant Signal Behav. 2011;6(7):1069-1071. doi 10.4161/psb.6.7.15254
32. Zheng X., Liu H., Ji H., Wang Y., Dong B., Qiao Y., Liu M., Li X. The wheat GT factor TaGT2L1D negatively regulates drought tolerance and plant development. Sci Rep. 2016;6:27042. doi 10.1038/srep27042
33. Zheng X., Lan J., Yu H., Zhang J., Zhang Y., Qin Y., Su X.-D., Qin G. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. Plant Commun. 2022;3(4):100309. doi 10.1016/j.xplc.2022.100309