Receptor-like leucine-rich repeat kinases of subfamily III are involved in the recognition of Pectobacterium spp. by Solanaceae plants
https://doi.org/10.18699/vjgb-25-58
Abstract
The genomes of Solanaceae plants contain over 600 receptor-like protein kinase genes with leucine-rich repeats (LRR-RLK), many likely associated with pathogen detection, but very few functionally characterized. Pectobacterium spp. are the major bacterial pathogens of agricultural crops, particularly potatoes and other Solanaceae plants. For relevant potato pathogens from the genus Pectobacterium, specific immune receptors have not been described in Solanaceae. However, in Malus × domestica, four LRR-RLK from the LRRIII subfamily (DIPM1-4) have been characterized as receptors for the related pathogen Erwinia amylovora. DIPMs specifically interact with the effector protein DspE and are involved in E. amylovora recognition. Since the DspE ortholog is also the main effector in Pectobacterium spp., we performed a phylogenetic analysis of LRRIII subfamily receptors in the most relevant Solanaceae representatives together with a much better characterized LRR-RLKIII of Arabidopsis thaliana and identified nine clusters of related RLKs. Clustering followed by analysis of published data allowed us to functionally characterize this RLK family and suggest the most likely candidates for checking interactions with the main effector of pectobacteria, DspE. Testing the kinase domains of representative cluster members in a yeast two-hybrid system revealed four Solanaceae RLKs interacting with the DspE effector from Pectobacterium versatile. Virus-induced silencing of these RLK genes demonstrated their involvement in P. versatile recognition. The RLK6 gene from Solanum bulbocastanum, which is not an ortholog of the DIPM proteins in apple, seems to be the most promising potential resistance gene. This work expands our understanding of LRR-RLKIII subfamily RLKs and their role in plant immunity, providing a foundation for future development of disease-resistant Solanaceae varieties.
About the Authors
E. V. ShrubBelarus
Minsk
N. V. Kalubaka
Belarus
Minsk
P. V. Vychyk
Belarus
Minsk
O. A. Badalyan
Belarus
Minsk
Y. A. Nikolaichik
Belarus
Minsk
References
1. Badalyan O.A., Nikolaichik Y.A. Receptor-like kinases RLK2 and RLK5 of Nicotiana benthamiana are involved in regulation of gene expression of key plant immune system components during the contact with Pectobacterium carotovorum. Izvestiya NAN Belarusi. Seriya Biologicheskikh Nauk = Proceedings of the National Academy of Sciences of Belarus. Biological Series. 2014;4:75-80 (in Russian)
2. Bentham A.R., De la Concepcion J.C., Mukhi N., Zdrzałek R., Draeger M., Gorenkin D., Hughes R.K., Banfield M.J. A molecular roadmap to the plant immune system. J Biol Chem. 2020;295(44): 14916-14935. doi 10.1074/jbc.REV120.010852
3. Böhm H., Albert I., Fan L., Reinhard A., Nürnberger T. Immune receptor complexes at the plant cell surface. Curr Opin Plant Biol. 2014;20:47-54. doi 10.1016/j.pbi.2014.04.007
4. Borejsza-Wysocka E.E., Malnoy M., Aldwinckle H.S., Meng X., Bonasera J.M., Nissinen R.M., Kim J.F., Beer S.V. The fire blight resistance of apple clones in which DspE-interacting proteins are silenced. Acta Hortic. 2006;704:509-514. doi 10.17660/ActaHortic.2006.704.80
5. Campos M.L. A novel regulator of stomatal immunity in tomato. Plant Physiol. 2020;183(3):820-821. doi 10.1104/pp.20.00655
6. Chakraborty S., Nguyen B., Wasti S.D., Xu G. Plant leucine-rich repeat receptor kinase (LRR-RK): structure, ligand perception, and activation mechanism. Molecules. 2019;24(17):3081. doi 10.3390/molecules24173081
7. Chatterjee A., Cui Y., Liu Y., Dumenyo C.K., Chatterjee A.K. Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl Environ Microbiol. 1995; 61(5):1959-1967. doi 10.1128/aem.61.5.1959-1967.1995
8. Cheng C.-Y., Krishnakumar V., Chan A.P., Thibaud-Nissen F., Schobel S., Town C.D. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017;89(4):789-804. doi 10.1111/tpj.13415
9. Chernomor O., von Haeseler A., Minh B.Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65(6):997-1008. doi 10.1093/sysbio/syw037
10. Couto D., Zipfel C. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol. 2016;16(9):537-552. doi 10.1038/nri.2016.77
11. Degrave A., Siamer S., Boureau T., Barny M.-A. The AvrE super family: ancestral type III effectors involved in suppression of pathogen-associated molecular pattern-triggered immunity. Mol Plant Pathol. 2015;16(8):899-905. doi 10.1111/mpp.12237
12. Dievart A., Gottin C., Périn C., Ranwez V., Chantret N. Origin and diversity of plant receptor-like kinases. Annu Rev Plant Biol. 2020;71: 131-156. doi 10.1146/annurev-arplant-073019-025927
13. Frederick R.D., Ahmad M., Majerczak D.R., Arroyo-Rodríguez A.S., Manulis S., Coplin D.L. Genetic organization of the Pantoea stewartii subsp. stewartii hrp gene cluster and sequence analysis of the hrpA, hrpC, hrpN, and wtsE operons. Mol Plant Microbe Interact. 2001;14(10):1213-1222. doi 10.1094/MPMI.2001.14.10.1213
14. Gaudriault S., Malandrin L., Paulin J.-P., Barny M.-A. DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol Microbiol. 1997; 26(5):1057-1069. doi 10.1046/j.1365-2958.1997.6442015.x
15. Giraldo M.C., Valent B. Filamentous plant pathogen effectors in action. Nat Rev Microbiol. 2013;11(11):800-814. doi 10.1038/nrmicro3119
16. Gómez-Gómez L., Boller T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell. 2000;5(6):1003-1011. doi 10.1016/S1097-2765(00)80265-8
17. Gorshkov V., Gubaev R., Petrova O., Daminova A., Gogoleva N., Ageeva M., Parfirova O., Prokchorchik M., Nikolaichik Y., Gogolev Y. Transcriptome profiling helps to identify potential and true molecular switches of stealth to brute force behavior in Pectobacterium atrosepticum during systemic colonization of tobacco plants. Eur J Plant Pathol. 2018;152(4):957-976. doi 10.1007/s10658-018-1496-6
18. Guzman A.R., Kim J.-G., Taylor K.W., Lanver D., Mudgett M.B. Tomato atypical receptor kinase1 is involved in the regulation of preinvasion defense. Plant Physiol. 2020;183(3):1306-1318. doi 10.1104/pp.19.01400
19. Huang W.R.H., Joosten M.H.A.J. Immune signaling: receptor-like proteins make the difference. Trends Plant Sci. 2025;30(1):54-68. doi 10.1016/j.tplants.2024.03.012
20. Jin L., Ham J.H., Hage R., Zhao W., Soto-Hernández J., Lee S.Y., Paek S.-M., Kim M.G., Boone C., Coplin D.L., Mackey D. Direct and indirect targeting of PP2A by conserved bacterial type-III effector proteins. PLoS Pathog. 2016;12(5):e1005609. doi 10.1371/journal.ppat.1005609
21. Jones J.D.G., Dangl J.L. The plant immune system. Nature. 2006; 444(7117):323-329. doi 10.1038/nature05286
22. Kawaharada Y., Kelly S., Nielsen M.W., Hjuler C.T., Gysel K., Muszyński A., Carlson R.W., … Jensen K.J., Ronson C.W., Blaise M., Radutoiu S., Stougaard J. Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature. 2015;523(7560): 308-312. doi 10.1038/nature14611
23. Kim J.-G., Li X., Roden J.A., Taylor K.W., Aakre C.D., Su B., Lalonde S., Kirik A., Chen Y., Baranage G., McLane H., Martin G.B., Mudgett M.B. Xanthomonas T3S effector XopN suppresses PAMPtriggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell. 2009;21(4):1305-1323. doi 10.1105/tpc.108.063123
24. Kim H.-S., Thammarat P., Lommel S.A., Hogan C.S., Charkowski A.O. Pectobacterium carotovorum elicits plant cell death with DspE/F but the P. carotovorum DspE does not suppress callose or induce ex pression of plant genes early in plant-microbe interactions. Mol Plant Microbe Interact. 2011;24(7):773-786. doi 10.1094/MPMI06-10-0143
25. Kravchenko U., Gogoleva N., Kalubaka N., Kruk A., Diubo Y., Gogolev Y., Nikolaichik Y. The PhoPQ two-component system is the major regulator of cell surface properties, stress responses and plantderived substrate utilisation during development of Pectobacterium versatile-host plant pathosystems. Front Microbiol. 2021;11: 621391. doi 10.3389/fmicb.2020.621391
26. Kröner A., Hamelin G., Andrivon D., Val F. Quantitative resistance of potato to Pectobacterium atrosepticum and Phytophthora infestans: Integrating PAMP-triggered response and pathogen growth. PLoS One. 2011;6(8):e23331. doi 10.1371/journal.pone.0023331
27. Kudo T., Kobayashi M., Terashima S., Katayama M., Ozaki S., Kanno M., Saito M., Yokoyama K., Ohyanagi H., Aoki K., Kubo Y., Yano K. TOMATOMICS: a web database for integrated omics information in tomato. Plant Cell Physiol. 2017;58(1):e8. doi 10.1093/pcp/pcw207
28. Kutschera A., Dawid C., Gisch N., Schmid C., Raasch L., Gerster T., Schäffer M., … Ernst R.K., Dorey S., Hückelhoven R., Hofmann T., Ranf S. Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. Science. 2019;364(6436): 178-181. doi 10.1126/science.aau1279
29. Kuzmich S.V., Badalyan O.A., Nikolaychik E.A. Analysis of in duction and suppression of MAMP-induced immunity of Nicotiana ben thamiana plants upon contact with Pectobacterium atrosepticum. Vestnik Belorusskogo Gosudarstvennogo Universiteta. Seriya 2: Khimiya. Biologiya. Geografiya = Bulletin of the Belarusian State University. Series 2: Chemistry, Biology, Geography. 2014;(2):36-40.
30. Kwenda S., Motlolometsi T.V., Birch P.R.J., Moleleki L.N. RNA-seq profiling reveals defense responses in a tolerant potato cultivar to stem infection by Pectobacterium carotovorum ssp. brasiliense. Front Plant Sci. 2016;7:1905. doi 10.3389/fpls.2016.01905
31. Letunic I., Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293-W296. doi 10.1093/nar/gkab301
32. Liu H., Coulthurst S.J., Pritchard L., Hedley P.E., Ravensdale M., Humphris S., Burr T., Takle G., Brurberg M.-B., Birch P.R.J., Salmond G.P.C., Toth I.K. Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog. 2008;4(6):e1000093. doi 10.1371/journal.ppat.1000093
33. Liu Y., Jiang G., Cui Y., Mukherjee A., Ma W.L., Chatterjee A.K. kdgREcc negatively regulates genes for pectinases, cellulase, protease, HarpinEcc, and a global RNA regulator in Erwinia carotovora subsp. carotovora. J Bacteriol. 1999;181(8):2411-2421. doi 10.1128/jb.181.8.2411-2421.1999
34. Liu Y., Schiff M., Dinesh-Kumar S.P. Virus-induced gene silencing in tomato. Plant J. 2002;31(6):777-786. doi 10.1046/j.1365-313X.2002.01394.x
35. Macho A.P., Zipfel C. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol. 2015;23:14-22. doi 10.1016/j.mib.2014.10.009
36. Meng X., Bonasera J.M., Kim J.F., Nissinen R.M., Beer S.V. Apple proteins that interact with DspA/E, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. Mol Plant Microbe Interact. 2006;19(1):53-61. doi 10.1094/MPMI-19-0053
37. Mor H., Manulis S., Zuck M., Nizan R., Coplin D.L., Barash I. Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae. Mol Plant Microbe Interact. 2001; 14(3):431-436. doi 10.1094/MPMI.2001.14.3.431
38. Navarro L., Zipfel C., Rowland O., Keller I., Robatzek S., Boller T., Jones J.D.G. The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol. 2004;135(2):1113-1128. doi 10.1104/pp.103.036749
39. Nikolaichik Y.A. Systemic induction of PR genes in Solanum lycopersicum plants upon contact with Pectobacterium carotovorum bacteria: the role of the DspE gene. Trudy Belorusskogo Gosudarstvennogo Universiteta = Proceedings of the Belarusian State University. 2009;4(2):215-220 (in Russian)
40. Nikolaichik Y.A., Ovchinnikova T.V., Valentovich L.N., Gu bich O.I., Sholukh M.V., Evtushenkov A.N. DspE protein is translocated by phytopathogenic bacteria Erwinia carotovora subsp. atro septica into the cells of Nicotiana tabacum and is required for the induction of the hypersensitive reaction. Doklady Nacional’noj Akademii Nauk Belarusi = Doklady of the National Academy of Sciences of Belarus. 2005;49(5):81-85 (in Russian)
41. Nikolaichik Y.A., Homskaya L.L., Ignatenko Y.I. The plant pathogen Pectobacterium carotovorum employs its Type III secretion system for blocking the systemic defense response in the host plant. Trudy Belorusskogo Gosudarstvennogo Universiteta – Proceedings of the Belarusian State University. 2009;4(1):193-200 (in Russian)
42. Nikolaichik Y.A., Kulik E.V., Badalyan O.A., Valentovich L.N., Kuzmich S.V., Evtushenkov A.N. Receptor-like transmembrane kinase of Solanaceae plants controls interaction with plant pathogen Pectobacterium carotovorum. Doklady Nacional’noj Akademii Nauk Belarusi = Doklady of the National Academy of Sciences of Belarus. 2012;56(1):106-112 (in Russian)
43. Pérombelon M.C.M. Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol. 2002;51(1):1-12. doi 10.1046/j.0032-0862.2001.Shorttitle.doc.x
44. Pham G.M., Hamilton J.P., Wood J.C., Burke J.T., Zhao H., Vaillancourt B., Ou S., Jiang J., Buell C.R. Construction of a chromosomescale long-read reference genome assembly for potato. GigaScience. 2020;9(9):giaa100. doi 10.1093/gigascience/giaa100
45. Pompili V., Dalla Costa L., Piazza S., Pindo M., Malnoy M. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnol J. 2020;18(3):845-858. doi 10.1111/pbi.13253
46. Qi Y., Tsuda K., Nguyen L.V., Wang X., Lin J., Murphy A.S., Glazebrook J., Thordal-Christensen H., Katagiri F. Physical association of Arabidopsis hypersensitive induced reaction proteins (HIRs) with the immune receptor RPS2. J Biol Chem. 2011;286(36):31297- 31307. doi 10.1074/jbc.M110.211615
47. Rodriguez-Furlan C., Campos R., Toth J.N., Van Norman J.M. Distinct mechanisms orchestrate the contra-polarity of IRK and KOIN, two LRR-receptor-kinases controlling root cell division. Nat Commun. 2022;13(1):235. doi 10.1038/s41467-021-27913-1
48. Rooney H.C., Van’t Klooster J.W., van der Hoorn R.A., Joosten M.H., Jones J.D., de Wit P.J. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science. 2005; 308(5729):1783-1786. doi 10.1126/science.1111404
49. Rozewicki J., Li S., Amada K.M., Standley D.M., Katoh K. MAFFTDASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 2019;47(W1):W5-W10. doi 10.1093/nar/gkz342
50. Serebriiskii I.G., Golemis E.A., Uetz P. The yeast two-hybrid system for detecting interacting proteins. In: Walker J.M. (Ed.) The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press, 2005;653-682. doi 10.1385/1-59259-890-0:653
51. Shiu S.-H., Bleecker A.B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 2003;132(2):530-543. doi 10.1104/pp.103.021964
52. Skoblyakov S.A., Miamin V.E., Lagonenko A.L., Nikolaichik Y.A., Pesnyakevich A.G. The effect of mutations in the peIW and kdgR genes on the production of pectate lyases in Erwinia carotovora subsp. atroseptica. Vestnik Belorusskogo Gosudarstvennogo Universiteta. Seriya 2: Khimiya. Biologiya. Geografiya = Bulletin of the Belarusian State University. Series 2: Chemistry, Biology, Geography. 2004;(2):40-44 (in Russian)
53. Steinegger M., Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35(11):1026-1028. doi 10.1038/nbt.3988
54. Sun L., Zhang J. Regulatory role of receptor-like cytoplasmic kinases in early immune signaling events in plants. FEMS Microbiol Rev. 2020;44(6):845-856. doi 10.1093/femsre/fuaa035
55. Tang D., Jia Y., Zhang J., Li H., Cheng L., Wang P., Bao Z., Liu Z., Feng S., Zhu X., Li D., Zhu G., Wang H., Zhou Ya., Zhou Yo., Bryan G.J., Buell C.R., Zhang C., Huang S. Genome evolution and diversity of wild and cultivated potatoes. Nature. 2022;606(7914): 535-541. doi 10.1038/s41586-022-04822-x
56. ten Hove C.A., de Jong M., Lapin D., Andel A., Sanchez-Perez G.F., Tarutani Y., Suzuki Y., Heidstra R., van den Ackerveken G. Transrepression of gene activity upstream of T-DNA tagged RLK902 links Arabidopsis root growth inhibition and downy mildew resistance. PLoS One. 2011;6(4):e19028. doi 10.1371/journal.pone.0019028
57. Thomma B.P., Nürnberger T., Joosten M.H. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. Plant Cell. 2011;23(1):4-15. doi 10.1105/tpc.110.082602
58. Toth I.K., Birch P.R. Rotting softly and stealthily. Curr Opin Plant Biol. 2005;8(4):424-429. doi 10.1016/j.pbi.2005.04.001
59. Valentovich L.N., Gubich O.I., Nikolaichik Y.A. The role of the DspF protein of Erwinia carotovora supsp. atroseptica in the functioning of the type III secretion system. Doklady Nacional’noj Akademii Nauk Belarusi = Doklady of the National Academy of Sciences of Belarus. 2008;52(5):79-85 (in Russian)
60. von Haeseler A., Schmidt H.A., Bui M.Q., Nguyen L.T. IQ-TREE: a fast and effective stochastic algorithm for estimating maximumlikelihood phylogenies. Mol Biol Evol. 2015;32(1):268-274. doi 10.1093/molbev/msu300
61. Waterhouse A.M., Procter J.B., Martin D.M.A., Clamp M., Barton G.J. Jalview Version 2 – a multiple sequence alignment editor and analy sis workbench. Bioinformatics. 2009;25(9):1189-1191. doi 10.1093/bioinformatics/btp033
62. Willmann R., Lajunen H.M., Erbs G., Newman M.-A., Kolb D., Tsuda K., Katagiri F., … Kulik A., Molinaro A., Lipka V., Gust A.A., Nürnberger T. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA. 2011;108(49):19824- 19829. doi 10.1073/pnas.1112862108
63. Yuan M., Ngou B.P.M., Ding P., Xin X.-F. PTI-ETI crosstalk: an integrative view of plant immunity. Curr Opin Plant Biol. 2021;62: 102030. doi 10.1016/j.pbi.2021.102030
64. Zhang S., Li C., Si J., Han Z., Chen D. Action mechanisms of effectors in plant-pathogen interaction. Int J Mol Sci. 2022;23(12):6758. doi 10.3390/ijms23126758
65. Zhao Y., Wu G., Shi H., Tang D. RECEPTOR-LIKE KINASE 902 associates with and Phosphorylates BRASSINOSTEROID-SIGNALING KINASE1 to regulate plant immunity. Mol Plant. 2019; 12(1):59-70. doi 10.1016/j.molp.2018.10.008
66. Zheng Y., Jiao C., Sun H., Rosli H.G., Pombo M.A., Zhang P., Banf M., Dai X., Martin G.B., Giovannoni J.J., Zhao P.X., Rhee S.Y., Fei Z. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant. 2016;9(12):1667-1670. doi 10.1016/j.molp.2016.09.014
67. Zipfel C., Kunze G., Chinchilla D., Caniard A., Jones J.D.G., Boller T., Felix G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell. 2006; 125(4):749-760. doi 10.1016/j.cell.2006.03.037