Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Mitochondrial DNA data allow distinguishing the subpopulations in the widespread Demoiselle crane (Anthropoides virgo)

https://doi.org/10.18699/vjgb-25-60

Abstract

The polymorphism of the mtDNA cytochrome b (cyt b) gene’s partial sequences has been studied in the Demoiselle crane (Anthropoides virgo Linnaeus, 1778) for the first time. Based on cyt b variability, the population genetic structure of the species was characterized within most of its range in Russia. Among 157 individuals we identified 18 haplotypes, nine of which were unique. In the European samples, we observed greater haplotype and nucleotide diversity and stronger genetic differentiation than in the Asian ones. Gene flow between different parts of the Demoiselle crane range is probably mediated by birds breeding in the Trans-Urals. The overall genetic subdivision of the species as estimated by FST was 0.265 (p < 0.001). The structure of the gene pool is formed by three main haplotypes, one of which predominates in the Azov-Black Sea region, the second in the Caspian and Volga-Ural regions, and the third is most common in the Asian samples. Based on the correspondence of intraspecific genetic differentiation of the Demoiselle cranes from different parts of the range to their flyways, we propose to distinguish the following subpopulations: (1) Azov-Black Sea/Chadian; (2) Caspian/Sudanese; (3) Trans-Ural/Indian; (4) South Siberian/Indian; (5) Baikal/Indian and (6) Trans-Baikal/Indian. The obtained data create the basis for monitoring the genetic diversity of the Demoiselle crane and developing a scientific background for measures to protect the gene pool of the species as a whole and its subpopulations.

About the Authors

E. A. Mudrik
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Russian Federation

Moscow



E. I. Ilyashenko
Vavilov Institute of General Genetics of the Russian Academy of Sciences; Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Russian Federation

Moscow



P. A. Kazimirov
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Russian Federation

Moscow



K. D. Kondrakova
Vavilov Institute of General Genetics of the Russian Academy of Sciences; Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Russian Federation

Moscow



T. P. Archimaeva
Tuvinian Institute for Exploration of Natural Resources of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Kyzyl



L. D. Bazarov
Tunkinsky National Park
Russian Federation

Kyren



O. A. Goroshko
Institute of Nature Resources, Ecology and Cryology of the Siberian Branch of the Russian Academy of Sciences; Daursky State Nature Biosphere Reserve, Nizhny Tsasuchey
Russian Federation

Chita, Tsasuchey



Ts. Z. Dorzhiev
Buryat State University named after Dorji Banzarov; Institute of General and Experimental Biology of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Ulan-Ude



A. N. Kuksin
Tuvinian Institute for Exploration of Natural Resources of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Kyzyl



K. A. Postelnykh
Oka State Nature Biosphere Reserve
Russian Federation

Brykin Bor



V. V. Shurkina
Khakassky State Nature Reserve
Russian Federation

Abakan



V. Yu. Ilyashenko
Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Russian Federation

Moscow



A. V. Shatokhina
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Russian Federation

Moscow



D V. Politov
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Russian Federation

Moscow



References

1. Belik V.P., Guguyeva E.V., Vetrov V.V., Milobog Y.V. The Demoiselle Crane in the northwestern Caspian lowland: distribution, number, and breeding success. In: Cranes of Eurasia (Biology, Distribution, Migrations, Management). Vol. 4. Moscow, 2011;157-174 (in Russian)

2. BirdLife International. Anthropoides virgo. The IUCN Red List of Threatened Species. 2018. Available at: https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22692081A131927771.en

3. BirdLife International. Anthropoides virgo (Europe assessment). The IUCN Red List of Threatened Species. 2021. Available at: https://dx.doi.org/10.2305/IUCN.UK.2021-3.RLTS.T22692081A166235355.en

4. Bivand R.S., Pebesma E., Gomez-Rubio V. Applied Spatial Data Analysis with R. NY: Springer, 2013. doi 10.1007/978-1-4614-7618-4

5. Campitelli E. ggnewscale: Multiple Fill and Colour Scales in ’ggplot2’. R package version 0.5.0.9000. 2024. doi 10.5281/zenodo.2543762

6. Clement M., Snell Q., Walke P., Posada D., Crandall K. TCS: estimating gene genealogies. In: Proceedings 16th International Parallel and Distributed Processing Symposium. IEEE, 2002;184. doi 10.1109/IPDPS.2002.1016585

7. Hasegawa M., Kishino H., Yano T.-A. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985; 22(2):160-174. doi 10.1007/BF02101694

8. Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518-522. doi 10.1093/molbev/msx281

9. Ilyashenko E.I. Demoiselle Crane (Anthropoides virgo). In: Mirande C.M., Harris J.T. (Eds) Crane Conservation Strategy. Baraboo, Wisconsin, USA: International Crane Foundation, 2019;383-396

10. Ilyashenko E.I. Demoiselle crane. In: The Red Book of the Russian Federation. Animals. Moscow: VNII Ecologiya Publ., 2021;689-691 (in Russian)

11. Ilyashenko E.I., Mudrik E.A., Andryushchenko Yu.A., Belik V.P., Belyalov O.V., Wikelski M., Gavrilov A.E., Goroshko O.A., Guguyeva E.V., Korepov M.V., Mnatsekanov R.A., Politov D.V., Postelnykh K.A., Lei C., Ilyashenko V.Yu. Migrations of the Demoiselle Crane (Anthropoides virgo, Gruiformes): remote tracking along flyways and at wintering grounds. Biol Bull. 2022;49(7):863-888. doi 10.1134/S1062359022070068

12. Ilyashenko E.I., Kondrakova K.D., Mudrik E.A., Wikelski M., Lei S., Ilyashenko V.Yu. The feature of the use by the Demoiselle Crane (Anthropoides virgo, Linneaus 1758) the European part of the range in the spring-summer and the pre-migratory periods. Arid Ecosystems. 2024;14(2):209-217. doi 10.1134/S2079096124700100

13. Kahle D., Wickham H. ggmap: spatial visualization with ggplot2. R J. 2013;5(1):144-161. doi 10.32614/RJ-2013-014

14. Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587-589. doi 10.1038/nmeth.4285

15. Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-3066. doi 10.1093/nar/gkf436

16. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Mentjies P., Drummond A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647-1649. doi 10.1093/bioinformatics/bts199

17. Leigh J.W., Bryant D. PopART: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6(9):1110-1116. doi 10.1111/2041-210X.12410

18. Librado P., Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451- 1452. doi 10.1093/bioinformatics/btp187

19. Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;7(5):1530-1534. doi 10.1093/molbev/msaa015

20. Mudrik Е.А., Ilyashenko Е.I., Goroshko O.A., Kashentseva T.А., Korepov М.V., Sikorskiy I.A., Dzhamirzoev G.S., Ilyashenko V.Yu., Politov D.V. The Demoiselle crane (Anthropoides virgo) population genetic structure in Russia. Vavilov J Genet Breed. 2018;22(5):586- 592. doi 10.18699/VJ18.398

21. Mudrik E.A., Ilyashenko E.I., Ilyashenko V.Yu., Postelnykh K.A., Kashentseva T.A., Korepov M.V., Goroshko O.A., Nechaeva A.V., Politov D.V. Genetic diversity and differentiation of the widespread migratory Demoiselle Crane, Grus virgo, on the northern edge of the species’ distribution. J Ornithol. 2022;163(1):291-299. doi 10.1007/s10336-021-01919-4

22. Pebesma E.J., Bivand R. Classes and methods for spatial data in R. R News. 2005;5(2):9-13

23. R Core Team. R: A Language and Environment for Statistical Computing. Manual. Vienna, Austria: R Foundation for Statistical Computing, 2022

24. Slowikowski K. ggrepel: Automatically Position Non-Overlapping Text Labels with ’ggplot2’. 2024. Available at: https://ggrepel.slowkow.com/

25. Strimas-Mackey M. smoothr: Smooth and Tidy Spatial Features. 2023. Available at: https://github.com/mstrimas/smoothr

26. Sun C.-H., Liu H.-Y., Xu P., Lu C.-H. Genetic diversity of wild wintering red-crowned crane (Grus japonensis) by microsatellite markers and mitochondrial Cyt B gene sequence in the Yancheng reserve. Anim Biotechnol. 2020;32(5):531-536. doi 10.1080/10495398.2020.1725538

27. Toparslan E., Karabag K., Bilge U. A workflow with R: phylogenetic analyses and visualizations using mitochondrial cytochrome b gene sequences. PLoS One. 2020;15(12):e0243927. doi 10.1371/journal.pone.0243927

28. Trifinopoulos J., Nguyen L.-T., von Haeseler A., Minh B.Q. W-IQTREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(1):W232-W235. doi 10.1093/nar/gkw256

29. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer, 2016. doi 10.1007/978-3-319-24277-4

30. Wright K. pals: Color Palettes, Colormaps, and Tools to Evaluate Them. R package version 1.9. 2024. Available at: https://kwstat.github.io/pals/

31. Xu S., Dai Z., Guo P., Fu X., Liu S., Zhou L., Tang W., Feng T., Chen M., Zhan L., Wu T., Hu E., Jiang Y., Bo X., Yu G. ggtreeExtra: compact visualization of richly annotated phylogenetic data. Mol Biol Evol. 2021;38(9):4039-4042. doi 10.1093/molbev/msab166

32. Yu G. Using ggtree to visualize data on tree-like structures. Curr Protoc Bioinformatics. 2020;69(1):e96. doi 10.1002/cpbi.96

33. Yu G. Data Integration, Manipulation and Visualization of Phylogenetic Treess. Chapman and Hall, 2022. doi 10.1201/9781003279242

34. Yu G., Smith D., Zhu H., Guan Y., Lam T.T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8(1): 28-36. doi 10.1111/2041-210X.12628

35. Yu G., Lam T.T.-Y., Zhu H., Guan Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol Biol Evol. 2018;35(2):3041-3043. doi 10.1093/molbev/msy194

36. Zardoya R., Meyer A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol Biol Evol. 1996;13(7):933-942. doi 10.1093/oxfordjournals.molbev.a025661


Review

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)