Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Genetic variation and phylogeography of the magpie’s genus Pica in the Holarctic

https://doi.org/10.18699/vjgb-25-61

Abstract

The theory of Pleistocene refugia is often used to explain the population genetic structure of species. However, it does not fully account for the diversity of species-specific characteristics and natural conditions. The genus Pica, which is widespread in the Holarctic, provides an ideal model for studying phylogeographic patterns in order to better understand processes of diversification and speciation. Markers of mitochondrial DNA remain widely used in phylogeographic studies, despite advances of whole genome techniques. We have summarized published research on the mitochondrial DNA Control Region (CR) variation, based on data from 279 samples which represent the majority of extant taxa across the entire distribution range of the genus. In the phylogenetic trees and networks, we found several cases of reciprocal monophyly among most allopatric species and subspecies, and in addition some examples of paraphyly and polyphyly. Bayesian skyline plots were calculated to explore population dynamics over time. They showed varying longevity of the lineages since their origin or after experiencing a bottleneck, e. g., in the case of the Kamchatka population, as well as unequal rates of expansion. In most cases, speciation followed a geographic model involving expansion and vicariance, sometimes with divergence in refugia. Somewhere, peripatric speciation may have happened due to separation of a marginal populations. By comparing haplotype composition among populations, we traced the origin of the recently established populations on Hokkaido and Kyushu islands from a limited number of colonizers from the mainland. Isolated cases of species in statu nascendi were identified through evidence of incomplete lineage sorting, leading to paraphyly, or signs of limited unidirectional interspecies introgression of nuclear genes in secondary contact zones. Several hypotheses regarding the formation of the magpie´s range are proposed. Various evolutionary scenarios found in the genus Pica were compared to those reported for the other bird species in a number of literature sources. 

About the Author

A. Р. Kryukov
Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Vladivostok



References

1. Abellán P., Svenning J.-C. Refugia within refugia – patterns in endemism and genetic divergence are linked to Late Quaternary climate stability in the Iberian Peninsula. Biol J Linn Soc. 2014;113(1):13- 28. doi 10.1111/bij.12309

2. Abramson N.I. Phylogeography: results, issues and perspectives. Informatsionnyy Vestnik VOGiS. 2007;11(2):307-331 (in Russian)

3. Abramson N.I., Kostygov A.Yu., Gambaryan N.G. Phylogeography of narrow-skulled vole (Microtus gregalis, Cricetidae, Rodentia) inferred from the variation of mitochondrial cyt b and a number of nuclear genes. Hystrix It J Mamm (N.s.). Supp. 10th Int. Conf. Rodens & Spatium. 2006;155-156

4. Aggerbeck M., Fjeldså J., Christidis L., Fabre P.-H., Jønsson K.A. Resolving deep lineage divergences in core corvoid passerine birds supports a proto-Papuan island origin. Mol Phylogenet Evol. 2014; 70:272-285. doi 10.1016/j.ympev.2013.09.027

5. Albrecht F., Hering J., Fuchs E. Illera J.C., Ihlow F., Shannon T.J., Collinson J.M., Wink M., Martens J., Päckert M. Phylogeny of the Eurasian Wren Nannus troglodytes (Aves: Passeriformes: Troglodytidae) reveals deep and complex diversification patterns of Ibero-Maghrebian and Cyrenaican populations. PLoS One. 2020;15(3):e0230151. doi 10.1371/journal.pone.0230151

6. Allen J.R., Hickler T., Singarayer J.S., Sykes M.T., Valdes P.J., Huntley B. Last glacial vegetation of northern Eurasia. Quaternary Sci Rev. 2010;29(19-20):2604-2618. doi 10.1016/j.quascirev.2010.05.031

7. Alström P., Saitoh T., Williams D., Nishiumi I., Shigeta Y., Ueda K., Irestedt M., Björklund M., Olsson U. The Arctic Warbler Phylloscopus borealis – three anciently separated cryptic species revealed. Ibis. 2011;153(2):395-410. doi 10.1111/j.1474-919X.2011.01116.x

8. Andreyenkova N.G., Karyakin I.V., Starikov I.J., Sauer‐Gürth H., Literák I., Andreyenkov O.V., Shnayder E.P., Bekmansurov R.H., Alexeyenko M.N., Wink M., Zhimulev I.F. Phylogeography and demographic history of the black kite Milvus migrans, a widespread raptor in Eurasia, Australia and Africa. J Avian Biol. 2021;52(10):e02822. doi 10.1111/jav.02822

9. Arbabi T., Gonzalez J., Wink M. Mitochondrial evidence for genetic diversity and low phylogeographic differentiation in the Marsh Warbler Acrocephalus palustris (Aves: Acrocephalidae). Org Divers Evol. 2014;14:409-417. doi 10.1007/s13127-014-0177-3

10. Avise J.C. Phylogeography: the history and formation of species. Boston, MA: Harvard Univ. Press, 2000

11. Avise J.C., Walker D. Pleistocene phylogeographic effects on avian populations and the speciation process. Proc R Soc B Biol Sci. 1998; 265(1395):457-463. doi 10.1098/rspb.1998.0317

12. Baker A.J., Marshall H.D. Mitochondrial control region sequences as tools for understanding evolution. In: Mindell D.P. (Ed.) Avian Molecular Evolution and Systematics. San Diego, California: Acad. Pr., 1997;51-82

13. Bannikova A.A. Molecular markers and modern phylogenetics of mammals. Zhurnal Obshchei Biologii = Journal of General Biology. 2004;65(4):278-305 (in Russian)

14. Barker F.K., Benesh M.K., Vandergon A.J., Lanyon S.M. Contrasting evolutionary dynamics and information content of the avian mitochondrial control region and ND2 gene. PLoS One. 2012;7(10): e46403. doi 10.1371/journal.pone.0046403

15. Berman D.I., Derenko M.V., Malyarchuk B.A., Grzybowski T., Kryukov A.P., Miscicka-Sliwka D. Genetic polymorphism of Siberian newt (Salamandrella keyserlingii, Caudata, Amphibia) in its range and the cryptic species of the newt S. schrenckii from Primorie. Doklady Biological Sciences. 2005;403(1-6):275-278. doi 10.1007/s10630-005-0110-1

16. Borzée A., Santos J.L., Sánchez-RamÍrez S., Bae Y., Heo K., Jang Y., Jowers M.J. Phylogeographic and population insights of the Asian common toad (Bufo gargarizans) in Korea and China: population isolation and expansions as response to the ice ages. PeerJ. 2017;5: e4044. doi 10.7717/peerj.4044

17. Brito P.H. The influence of Pleistocene glacial refugia on tawny owl genetic diversity and phylogeography in Western Europe. Mol Ecol. 2005;14(10):3077-3094. doi 10.1111/j.1365-294X.2005.02663.x

18. Calderon L., Campagna L., Wilke T., Lormee H., Eraud C., Dunn J.C., Rocha G., Zehtindjiev P., Bakaloudis D.E., Metzger B., Cecere J.G. Genomic evidence of demographic fluctuations and lack of genetic structure across flyways in a long distance migrant, the European turtle dove. BMC Evol Biol. 2016;16(1):237. doi 10.1186/s12862-016-0817-7

19. Chelomina G.N., Meschersky I.G., Gajduchenko H., Borisov Y.M. Phylogeography of Korean field mouse Apodemus peninsulae (Rodentia: Muridae): an update. Zool J Linn Soc. 2024;zlae016. doi 10.1093/zoolinnean/zlae016

20. Cicero C., Mason N.A., Oong Z., Title P.O., Morales M.E., Feldheim K.A., Koo M.S., Bowie R.C. Deep ecomorphological and genetic divergence in Steller’s Jays (Cyanocitta stelleri, Aves: Corvidae). Ecol Evol. 2022;12(12):e9517. doi 10.1002/ece3.9517

21. Cramp S., Perrins C.M. (Eds) Handbook of the Birds of Europe the Middle East and North Africa. The Birds of the Western Palearctic. Vol. VIII. Crows to Finches. Oxford: Oxford Univ. Press, 1994

22. Dai C., Zhao N., Wang W., Lin C., Gao B., Yang X., Zhang Z., Lei F. Profound climatic effects on two East Asian black-throated tits (Aves: Aegithalidae), revealed by ecological niche models and phylogeographic analysis. PLoS One. 2011;6(12):e29329. doi 10.1371/journal.pone.0029329

23. de Lattin G. Die Ausbreitungszentren der Holarktischen Landtierwelt. In: Pflugfelder O. (Ed.) Verhandlungen der Deutschen Zoologischen Gesellschaft, vom 21. bis 26. Mai 1956 in Hamburg. Zoologischer Anzeiger, 20. Supplementband. 1957;380-410

24. del Hoyo J., Collar N.J. HBW and BirdLife International Illustrated Checklist of the Birds of the World. 2. Passerines. Barcelona: Lynx Edicions, 2016

25. Drovetski S.V., Zink R.M., Mode N.A. Patchy distributions belie morphological and genetic homogeneity in rosy-finches. Mol Phyloget Evol. 2009;50(3):437-445. doi 10.1016/j.ympev.2008.12.002

26. Drovetski S.V., Raković M., Semenov G., Fadeev I.V., Red’kin Y.A. Limited phylogeographic signal in sex-linked and autosomal loci despite geographically, ecologically, and phenotypically concordant structure of mtDNA variation in the Holarctic avian genus Eremophila. PLoS One. 2014;9(1):e87570. doi 10.1371/journal.pone.0087570

27. Dufresnes C., Litvinchuk S.N., Borzée A., Jang Y., Li J.T., Miura I., Perrin N., Stöck M. Phylogeography reveals an ancient cryptic radiation in East-Asian tree frogs (Hyla japonica group) and complex relationships between continental and island lineages. BMC Evol Biol. 2016;16(1):253. doi 10.1186/s12862-016-0814-x

28. Ebels E.B. Speciation in Pica magpies. Dutch Birding. 2003;25(2): 103-116

29. Edwards S., Schultz A., Campbell-Staton S. Next-generation sequencing and the expanding domain of phylogeography. Folia Zool. 2015; 64(3):187-206. doi 10.25225/fozo.v64.i3.a2.2015

30. Edwards S.V., Potter S., Schmitt C.J., Bragg J.G., Moritz C. Reticulation, divergence, and the phylogeography-phylogenetics continuum. Proc Natl Acad Sci USA. 2016a;113(29):8025-8032. doi 10.1073/pnas.1601066113

31. Edwards S.V., Xi Z., Janke A., Faircloth B.C., McCormack J.E., Glenn T.C., Zhong B., Wu S., Lemmon E.M., Lemmon A.R., Leaché A.D. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol Phylogenet Evol. 2016b;94:447-462. doi 10.1016/j.ympev.2015.10.027

32. Edwards S.V., Robin V.V., Ferrand N., Moritz C. The evolution of comparative phylogeography: putting the geography (and more) into comparative population genomics. Genome Biol Evol. 2022;14(1): evab176. doi 10.1093/gbe/evab176

33. Eguchi K. The Eurasian Magpie. Jpn J Ornithol. 2016;65(1):5-30

34. Eguchi K., Kubo H. The origin of the Magpie Pica pica sericea in Japan – an investigation of historical records. J Yamashina Inst Ornithol. 1992;24:32-39 (in Japanese with English abstract)

35. Ekman J., Ericson P.G.P. Out of Gondwanaland; the evolutionary history of cooperative breeding and social behaviour among crows, magpies, jays and allies. Proc Biol Sci. 2006;273(1590):1117-1125. doi 10.1098/rspb.2005.3431

36. Ericson P.G.P., Jansen A.-L., Johansson U.S., Ekman J. Inter-generic relationships of the crows, jays, magpies and allied groups (Aves: Corvidae) based on nucleotide sequence data. J Avian Biol. 2005; 36(3):222-234. doi 10.1111/j.0908-8857.2001.03409.x

37. Ferrero M.E., Blanco-Aguiar J.A., Lougheed S.C., Sánchez-Darbudo I., De Nova P.J., Villafuerte R., Dávila J.A. Phylogeography and genetic structure of the red-legged partridge (Alectoris rufa): more evidence for refugia within the Iberian glacial refugium. Mol Ecol. 2011;20(12):2628-2642. doi 10.1111/j.1365-294X.2011.05111.x

38. Fok K.W., Wade C.M., Parkin D.T. Inferring the phylogeny of disjunct populations of the azure-winged magpie Cyanopica cyanus from mitochondrial control region sequences. Proc Biol Sci. 2002; 269(1501):1671-1679. doi 10.1098/rspb.2002.2057

39. Freeland J.R., Boag P.T. Phylogenetics of Darwin’s finches: paraphyly in the tree-finches, and two divergent lineages in the Warbler Finch. The Auk. 1999;116(3):577-588

40. Fu J., Wen L. Impacts of Quaternary glaciation, geological history and geography on animal species history in continental East Asia: a phylogeographic review. Mol Ecol. 2023;32(16):4497-4514. doi 10.1111/mec.17053

41. Funk D.J., Omland K.E. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Ann Rev Ecol Evol Syst. 2003;34(1):397-423. doi 10.1146/annurev.ecolsys.34.011802.132421

42. Gill F., Donsker D., Rasmussen P. (Eds) IOC World Bird List (v 11.2). 2021. doi 10.14344/IOC.ML.11.2

43. Godoy J.A., Negro J.J., Hiraldo F., Donázar J.A. Phylogeography, genetic structure and diversity in the endangered bearded vulture ( Gypaetus barbatus, L.) as revealed by mitochondrial DNA. Mol Ecol. 2004;13(2):371-390. doi 10.1046/j.1365-294x.2003.02075.x

44. Gómez A., Lunt D.H. Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S., Ferrand N. (Eds) Phylogeography of Southern European Refugia. Dordrecht: Springer, 2007;155-188. doi 10.1007/1-4020-4904-8_5

45. Goodwin D. Crows of the World. Seattle, WA, 1986

46. Goroshko O.A., Kryukov A.P., Liu Songtao, Dou Huashan, Bazyrool B.K. On distribution, subspecies and taxonomic rank of the magpie (Pica pica) in the Hailar-Argun’ river basin (North-East China and Transbaikalia, Russia). Baykal’skiy Zoologicheskiy Zhurnal = Baikal Zoological Journal. 2018;2(23):38-45 (in Russian)

47. Granoszewski W., Demske D., Nita M., Heumann G., Andreev A.A. Vegetation and climate variability during the Last Interglacial evidenced in the pollen record from Lake Baikal. Global Planet Change. 2005;46(1-4):187-198. doi 10.1016/j.gloplacha.2004.09.017

48. GWA (Government of Western Australia). Keep eyes peeled for unusual birds at ports. 2017. Available at https://www.agric.wa.gov.au/news/media-releases/keep-eyes-peeled-unusual-birds-ports. Accessed January 8, 2024

49. Hansson B., Hasselquist D., Tarka M., Zehtindjiev P., Bensch S. Postglacial colonisation patterns and the role of isolation and expansion in driving diversification in a passerine bird. PLoS One. 2008;3(7):e2794. doi 10.1371/journal.pone.0002794

50. Haring E., Gamauf A., Kryukov A. Phylogeographic patterns in widespread corvid birds. Mol Phylogenet Evol. 2007;45:840-862. doi 10.1016/j.ympev.2007.06.016

51. Haring E., Däubl B., Pinsker W., Kryukov A., Gamauf A. Genetic divergences and intraspecific variation in corvids of the genus Corvus (Aves: Passeriformes: Corvidae) – a first survey based on museum specimens. J Zool Syst Evol Res. 2012;50(3):230-246. doi 10.1111/j.1439-0469.2012.00664.x

52. Hewitt G.M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc. 1996;58(3):247-276. doi 10.1006/bijl.1996.0035

53. Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000; 405(6789):907-913. doi 10.1038/35016000

54. Hewitt G.M. Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci. 2004;359(1442): 183-195. doi 10.1098/rstb.2003.1388

55. Hewitt G.M. Quaternary phylogeography: the roots of hybrid zones. Genetica. 2011;139(5):617-638. doi 10.1007/s10709-011-9547-3

56. Hickerson M.J., Carstens B.C., Cavender-Bares J., Crandall K.A., Graham C.H., Johnson J.B., Rissler L., Victoriano P.F., Yoder A.D. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol. 2010;54(1):291-301. doi 10.1016/j.ympev.2009.09.016

57. Hogner S., Laskemoen T., Lifjeld J.T., Porkert J., Kleven O., Albayrak T., Kabasakal B., Johnsen A. Deep sympatric mitochondrial divergence without reproductive isolation in the common redstart Phoenicurus phoenicurus. Ecol Evol. 2012;2(12):2974-2988. doi 10.1002/ece3.398

58. Horimoto T. Records of magpie Pica pica in Iburi district, Southwestern Hokkaido. J Yamashina Inst Ornithol. 2004;36:87-90 (in Japanese with English abstract)

59. Hourlay F., Libois R., D’Amico F., Sarà M., O’Halloran J., Michaux J.R. Evidence of a highly complex phylogeographic structure on a specialist river bird species, the dipper (Cinclus cinclus). Mol Phylogenet Evol. 2008;49(2):435-444. doi 10.1016/j.ympev.2008.07.025

60. Huang Z., Liu N., Liang W., Zhang Y., Liao X., Ruan L., Yang Z. Phylogeography of Chinese bamboo partridge, Bambusicola thoracica thoracica (Aves: Galliformes) in south China: inference from mitochondrial DNA control-region sequences. Mol Phylogenet Evol. 2010;56(1):273-280. doi 10.1016/j.ympev.2010.01.028

61. Hung C.M., Drovetski S.V., Zink R.M. Recent allopatric divergence and niche evolution in a widespread Palearctic bird, the common rosefinch (Carpodacus erythrinus). Mol Phylogenet Evol. 2013; 66(1):103-111. doi 10.1016/j.ympev.2012.09.012

62. Iqbal F., Ayub O., Song B.K., Wilson R., Fahim M., Rahman S. Sequence and phylogeny of the complete mitochondrial genome of the Himalayan jungle crow (Corvidae: Corvus macrorhynchos intermedius) from Pakistan. Mitochondrial DNA B Resour. 2020;5(1): 348-350. doi 10.1080/23802359.2019.1704637

63. Irwin D.E. Phylogeographic breaks without geographic barriers to gene flow. Evolution. 2002;56(12):2383-2394. doi 10.1111/j.0014-3820.2002.tb00164.x

64. Johnson N.K., Cicero C. New mitochondrial DNA data affirm the importance of Pleistocene speciation in North American birds. Evolution. 2004;58(5):1122-1130. doi 10.1111/j.0014-3820.2004.tb00445.x

65. Jønsson K.A., Fabre P.-H., Ricklefs R.E., Fjeldså J. Major global radiation of corvoid birds originated in the proto-Papuan archipelago. Proc Natl Acad Sci USA. 2011;108(6):2328-2333. doi 10.1073/pnas.1018956108

66. Joseph L., Omland K.E. Phylogeography: its development and impact in Australo-Papuan ornithology with special reference to paraphyly in Australian birds. Emu-Austral Ornith. 2009;109(1):1-23. doi 10.1071/MU08024

67. Kamchatka, Kurils and Komandor Islands. History of landscape development in Siberia and Far East. Moscow: Nauka Publ., 1974 (in Russian)

68. Kamp L., Pasinelli G., Milanesi P., Drovetski S.V., Kosiński Z., Kossenko S., Robles H., Schweizer M. Significant Asia-Europe divergence in the middle spotted woodpecker (Aves, Picidae). Zool Scripta. 2019;48(1):17-32. doi 10.1111/ZSC.12320

69. Kholodova M.V. Comparative phylogeography: molecular me thods, eco logical interpretation. Mol Biol. 2009;43(5):847-854. doi 10.1134/S002689330905015X]

70. Kim H.R., Park Y.C. Genetic isolation of Korean populations of Apodemus peninsulae (Rodentia: Muridae) from their neighboring po pulations. Genes Genomics. 2015;37:999-1005. doi 10.1007/s13258-015-0331-0

71. Kim S.-I., Park S.-K., Lee H., Oshida T., Kimura J., Kim Y.-J., Nguyen S.T., Sashika M., Min M.-S. Phylogeography of Korean raccoon dogs: implications of peripheral isolation of a forest mammal in East Asia. J Zool. 2013;290(3):225-235. doi 10.1111/jzo.12031

72. Klicka J., Zink R.M. The importance of recent ice ages in speciation: a failed paradigm. Science. 1997;277(5332):1666-1669. doi 10.1126/science.277.5332.1666

73. Krehenwinkel H., Graze M., Rödder D., Tanaka K., Baba Y.G., Muster C., Uhl G. A phylogeographical survey of a highly dispersive spider reveals eastern Asia as a major glacial refugium for Palaearctic fauna. J Biogeogr. 2016;43(8):1583-1594. doi 10.1111/jbi.12742

74. Krijgsman W. The Mediterranean: Mare Nostrum of Earth sciences. Earth Planet Sci Lett. 2002;205(1-2):1-12. doi 10.1016/S0012-821X(02)01008-7

75. Kryukov A.P. Phylogeography and hybridization of corvid birds in the Palearctic region. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2019;23(2):232-238. doi 10.18699/VJ19.487

76. Kryukov A.P., Goroshko O.A. Breeding success of interspecies hybrids: reduced fertility in a hybrid magpie population (Pica pica × Pica serica, Aves). Biol Bull Rev. 2025;15(3):377-384. doi 10.1134/S2079086425700057

77. Kryukov A.P., Suzuki H. Phylogeography of carrion, hooded and jungle crows (Aves, Corvidae) inferred from partial sequencing of the mitochondrial Cytochrome b gene. Russian Journal of Genetics. 2000;36(8):922-929

78. Kryukov A., Iwasa M.A., Kakizawa R., Suzuki H., Pinsker W., Haring E. Synchronic east-west divergence in azure-winged magpies (Cyanopica cyanus) and magpies (Pica pica). J Zool Syst Evol Res. 2004;42:342-351. doi 10.1111/j.1439-0469.2004.00287.x

79. Kryukov A., Spiridonova L., Mori S., Arkhipov V., Redkin Ya., Goroshko O., Lobkov E., Haring E. Deep phylogeographic breaks in magpie Pica pica across the Holarctic: concordance with bioacoustics and phenotypes. Zool Sci. 2017;34(3):185-200. doi 10.2108/zs160119

80. Kryukov A.P., Spiridonova L.N., Tyunin A.P., Kryukov K.A., Dorda B.A. Complete mitochondrial genomes of five subspecies of the Eurasian magpie Pica pica, obtained with Oxford Nanopore MinION, and their interpretation regarding intraspecific taxonomy. Mitochondrial DNA B. 2020;5(3):3792-3793. doi 10.1080/23802359.2020.1838354

81. Kryukov A.P., Goroshko O.A., Arkhipov V.Y., Red’kin Y.A., Lee S.I., Dorda B.A., Kryukov K.A., Kapun M., Haring E. Introgression at the emerging secondary contact zone of magpie Pica pica subspecies (Aves: Corvidae): integrating data on nuclear and mitochondrial markers, vocalizations and field observations. Org Divers Evol. 2022;22:1037-1064. doi 10.1007/s13127-022-00568-6

82. Kryukov A.P., Kryukov K.A., Collier K., Fang B., Edwards S. Mitogenomics clarifies the position of the Nearctic magpies (Pica hudsonia and Pica nuttalli) within the Holarctic magpie radiation. Curr Zool. 2024;70(5):618-630. doi 10.1093/cz/zoad048

83. Kvist L., Martens J., Ahola A., Orell M. Phylogeography of a Palaearctic sedentary passerine, the willow tit (Parus montanus). J Evol Biol. 2001;14(6):930-941. doi 10.1046/j.1420-9101.2001.00354.x

84. Lee M.Y., Lissovsky A.A., Park S.K., Obolenskaya E.V., Dokuchaev N.E., Zhang Y.P., Yu L., Kim Y.J., Voloshina I., Myslenkov A., Choi T.Y., Min M.-S., Lee H. Mitochondrial cytochrome b sequence variation and population structure of Siberian chipmunk (Tamias sibiricus) in Northeastern Asia and population subdivision in South Korea. Mol Cells. 2008;26(6):566-575. doi 10.1016/S1016-8478(23)25237-1

85. Lee S., Parr C.S., Hwang Y., Mindell D.P., Choe J.C. Phylogeny of magpies (genus Pica) inferred from mtDNA data. Mol Phylogenet Evol. 2003;29:250-257. doi 10.1016/s1055-7903(03)00096-4

86. Li J.J., Shu Q., Zhou S.Z., Zhao Z.J., Zhang J.M. Review and prospects of Quaternary glaciation research in China. J Glaciol Geocryol. 2004;26(3):235-243. doi 10.7522/j.issn.1000-0240.2004.0041

87. Li S.H., Yeung C.K.L., Feinstein J., Han L., Le M.H., Wang C.X., Ding P. Sailing through the Late Pleistocene: unusual historical demography of an East Asian endemic, the Chinese Hwamei (Leucodioptron canorum canorum), during the last glacial period. Mol Ecol. 2009;18(4):622-633. doi 10.1111/j.1365-294X.2008.04028.x

88. Li X., Dong F., Lei F., Alström P., Zhang R., Ödeen A., Fjeldså J., Ericson P.G., Zou F., Yang X. Shaped by uneven Pleistocene climate: mitochondrial phylogeographic pattern and population history of white wagtail Motacilla alba (Aves: Passeriformes). J Avian Biol. 2016; 47(2):263-274. doi 10.1111/jav.00826

89. Liu S., Wei C., Leader P.J., Carey G.J., Jia C., Fu Y., Alström P., Liu Y. Taxonomic revision of the Long-tailed Rosefinch Carpodacus sibiricus complex. J Ornithol. 2020;161:1061-1070. doi 10.1007/s10336-020-01801-9

90. Londei T. Association of Pica magpies with grazing ungulates: a clue to the genus’ origins. Rivista Italiana Ornitologia. 2018;87(2):39-42. doi 10.4081/rio.2017.295

91. Madge S., Christie D.A., Kirwan G.M. Oriental Magpie (Pica serica), version 1.0. In: Billerman S.M., Keeney B.K., Rodewald P.G., Schulenberg T.S. (Eds) Birds of the World. Ithaca, NY, USA: Cornell Lab. Ornithology, 2020. doi 10.2173/bow.orimag1.01

92. Martínez J.G. Urraca – Pica pica. In: Salvador A., Morales M.B. (Eds) Enciclopedia Virtual de los Vertebrados Españoles. Madrid: Museo Nacional de Ciencias Naturales, 2016;1-23. doi 10.20350/digitalCSIC/8709

93. Mayr E. Animal Species and Evolution. Cambridge, MA, USA: Belknap Press, 1963

94. McCormack J.E., Hird S.M., Zellmer A.J., Carstens B.C., Brumfield R.T. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol. 2013;66(2):526- 538. doi 10.1016/j.ympev.2011.12.007

95. McKay B.D., Zink R.M. The causes of mitochondrial DNA gene tree paraphyly in birds. Mol Phylogenet Evol. 2010;54(2):647-650. doi 10.1016/j.ympev.2009.08.024

96. Mila B., McCormack J.E., Castaneda G., Wayne R.K., Smith T.B. Recent postglacial range expansion drives the rapid diversification of a songbird lineage in the genus Junco. Proc Biol Sci. 2007; 274(1626):2653-2660. doi 10.1098/rspb.2007.0852

97. Miraldo A., Hewitt G.M., Paulo O.S., Emerson B.C. Phylogeography and demographic history of Lacerta lepida in the Iberian Peninsula: multiple refugia, range expansions and secondary contact zones. BMC Evol Biol. 2011;11:170. doi 10.1186/1471-2148-11-170

98. Mori S., Hasegawa O., Eguchi K., Hayashi Y., Fujioka M., Kryukov A., Nishiumi I. The origin and trend of common magpie in Japan: microsatellite analysis of old and new introduced populations. Ornithol Sci. 2014;13(Suppl.):59. Available at: https://ioc26.ornithology.jp/ioc26_abst-all.pdf

99. Moura C.C.D.M., Bastian H.V., Bastian A., Wang E., Wang X., Wink M. Pliocene origin, ice ages and postglacial population expansion have influenced a panmictic phylogeography of the European Bee-Eater Merops apiaster. Diversity. 2019;11(1):12. doi 10.3390/d11010012

100. Nazarenko A.A. On faunistic cycles (extinction-expansion-extinction…) with special reference to the East Palearctic dendrophilous avifauna. Zhurnal Obshchei Biologii = Journal of General Biology. 1982;43(6):823-835 (in Russian)

101. Neto J.M., Arroyo J.L., Bargain B., Monros J.S., Matrai N., Prochazka P., Zehtindjiev P. Phylogeography of a habitat specialist with high dispersal capability: the Savi’s warbler Locustella luscinioides. PLoS One. 2012;7(6):e38497. doi 10.1371/journal.pone.0038497

102. Omland K.E., Baker J.M., Peters J.L. Genetic signatures of intermediate divergence: population history of Old and New World Holarctic ravens (Corvus corax). Mol Ecol. 2006;15(3):795-808. doi 10.1111/j.1365-294X.2005.02827.x

103. Ottenburghs J., Lavretsky P., Peters J.L., Kawakami T., Kraus R.H. Population genomics and phylogeography. In: Kraus R.H.S. (Ed.) Avian Genomics in Ecology and Evolution. Springer Nature Switzerland AG, 2019;237-265. doi 10.1007/978-3-030-16477-5_8

104. Pârâu L.G., Wink M. Common patterns in the molecular phylogeography of western palearctic birds: a comprehensive review. J Ornithol. 2021;162(4):937-959. doi 10.1007/s10336-021-01893-x

105. Pârâu L.G., Frias-Soler R.C., Wink M. High genetic diversity among breeding Red-Backed Shrikes Lanius collurio in the Western Palearctic. Diversity. 2019;11(3):31. doi 10.3390/d11030031

106. Pavelková Řičánková V., Robovský J., Riegert J. Ecological structure of recent and last glacial mammalian Faunas in Northern Eurasia: the case of Altai-Sayan refugium. PLoS One. 2014;9(1):e85056. doi 10.1371/journal.pone.0085056

107. Pavlova A., Zink R.M., Rohwer S. Evolutionary history, population genetics, and gene flow in the common rosefinch (Carpodacus erythrinus). Mol Phylogenet Evol. 2005;36(3):669-681. doi 10.1016/j.ympev.2005.02.010

108. Pavlova A., Rohwer S., Drovetski S.V., Zink R.M. Different post-Pleistocene histories of Eurasian parids. J Heredity. 2006;97(4):389-402. doi 10.1093/jhered/esl011

109. Perktaş U., Quintero E. A wide geographical survey of mitochondrial DNA variation in the great spotted woodpecker complex, Dendrocopos major (Aves: Picidae). Biol J Linn Soc. 2013;108:173-188. doi 10.1111/j.1095-8312.2012.02003.x

110. Peters J.L., Zhuravlev Y., Fefelov I., Logie A., Omland K.E. Nuclear loci and coalescent methods support ancient hybridization as cause of mitochondrial paraphyly between gadwall and falcated duck (Anas spp.). Evolution. 2007;61(8):1992-2006. doi 10.1111/j.1558-5646.2007.00149.x

111. Pons J.-M., Olioso G., Cruaud C., Fuchs J. Phylogeography of the Eurasian green woodpecker (Picus viridis). J Biogeogr. 2011;38(2): 311-325. doi 10.1111/j.1365-2699.2010.02401.x

112. Pons J.-M., Masson C., Olioso G., Fuchs J. Gene flow and genetic admixture across a secondary contact zone between two divergent lineages of the Eurasian Green Woodpecker Picus viridis. J Ornithol. 2019;160:935-945. doi 10.1007/s10336-019-01675-6

113. Poschel J., Heltai B., Gracia E., Quintana M.F., Velo-Antón G., Arribas O., Valdeón A., Wink M., Fritz U., Vamberge M. Complex hybridization patterns in European pond turtles (Emys orbicularis) in the Pyrenean Region. Sci Rep. 2018;8(1):15925. doi 10.1038/s41598-018-34178-0

114. Qu Y., Zhang R., Quan Q., Song G., Li S.H., Lei F. Incomplete lineage sorting or secondary admixture: disentangling historical divergence from recent gene flow in the Vinous-throated parrotbill (Paradoxornis webbianus). Mol Ecol. 2012;21(24):6117-6133. doi 10.1111/mec.12080

115. Red’kin Y.A., Arkhipov V.Yu., Zhigir D.R. On subspecies taxonomy and nomenclature of Far Eastern subspecies of magpie Pica pica Linnaeus, 1758 of the group “serica”. Russian Journal of Ornithology. 2021;30(2053):1535-1544 (in Russian)

116. Reinegger R.D., Bhanda G. First sighting of Eurasian magpie (Pica pica) in Mauritius. Bull Phaethon. 2024;59:51-55

117. Remington C.L. Suture-zones of hybrid interaction between recently joined biotas. In: Dobzhansky T., Hecht M.K., Steere W.C. (Eds) Evolutionary Biology. Boston, MA: Springer, 1968;321-428. doi 10.1007/978-1-4684-8094-8_8

118. Rustamov A.K. Family Corvidae. In: Birds of the Soviet Union, Vol. 5. Moscow: Sovetskaya Nauka Publ., 1954;13-104 (in Russian)

119. Ryall C. Further records and updates of range expansion in House Crow Corvus splendens. Bull Br Ornithol Club. 2016;136(1):39-45

120. Saitoh T., Alström P., Nishiumi I., Shigeta Y., Williams D., Olsson U., Ueda K. Old divergences in a boreal bird supports longterm survival through the Ice Ages. BMC Evol Biol. 2010;10:35. doi 10.1186/1471-2148-10-35

121. Sakka H., Quere J.P., Kartavtseva I., Pavlenko M., Chelomina G., Atopkin D., Bogdanov A., Michaux J. Comparative phylogeography of four Apodemus species (Mammalia: Rodentia) in the Asian Far East: evidence of Quaternary climatic changes in their genetic structure. Biol J Linn Soc. 2010;100(4):797-821. doi 10.1111/j.1095-8312.2010.01477.x

122. Salinas P., Morinha F., Literak I., García J., Milá B., Blanco G. Genetic diversity, differentiation and historical origin of the isolated population of rooks Corvus frugilegus in Iberia. J Avian Biol. 2021; 52(3):e02689. doi 10.1111/jav.02689

123. Saunders M.A., Edwards S.V. Dynamics and phylogenetic implications of MtDNA control region sequences in New World Jays (Aves: Corvidae). J Mol Evol. 2000;51(2):97-109. doi 10.1007/s002390010070

124. Serizawa K., Suzuki H., Iwasa M., Tsuchiya K., Pavlenko M.V., Kartavtseva I.V., Chelomina G.N., Dokuchaev N.E., Han S.-H. A spatial aspect of mitochondrial DNA genealogy in Apodemus peninsulae from East Asia. Biochem Genet. 2002;40(5-6):149-161. doi 10.1023/a:1015841424598

125. Song G., Zhang R., DuBay S.G., Qu Y., Dong L., Wang W., Zhang Y., Lambert D.M., Lei F. East Asian allopatry and north Eurasian sympatry in Long-tailed Tit lineages despite similar population dynamics during the late Pleistocene. Zool Scripta. 2016;45(2):115-126. doi 10.1111/zsc.12148

126. Song G., Zhang R., Alström P., Irestedt M., Cai T., Qu Y., Ericson P.G.P., Fjeldså J., Lei F. Complete taxon sampling of the avian genus Pica (magpies) reveals ancient relictual populations and synchronous Late-Pleistocene demographic expansion across the Northern Hemisphere. J Avian Biol. 2018;49(2):e01612. doi 10.1111/jav.01612

127. Song G., Zhang R., Machado-Stredel F. Great journey of Great Tits (Parus major group): origin, diversification and historical demographics of a broadly distributed bird lineage. J Biogeogr. 2020;47: 1585-1598. doi 10.1111/jbi.13863

128. Stegmann B.K. Corvid Birds. Leningrad: USSR Acad. Sci. Publ., 1932 (in Russian)

129. Taberlet P., Fumagalli L., Wust‐Saucy A.G., Cosson J.F. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 1998;7(4):453-464. doi 10.1046/j.1365-294x.1998.00289.x

130. Toews D.P., Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012;21(16):3907-3930. doi 10.1111/j.1365-294X.2012.05664.x

131. Toews D.P., Irwin D.E. Cryptic speciation in a Holarctic passerine revealed by genetic and bioacoustic analyses. Mol Ecol. 2008;17(11): 2691-2705. doi 10.1111/j.1365-294X.2008.03769.x

132. Wang E., Van Wijk R.E., Braun M.S., Wink M. Gene flow and genetic drift contribute to high genetic diversity with low phylogeographical structure in European hoopoes (Upupa epops). Mol Phylogenet Evol. 2017;113:113-125. doi 10.1016/j.ympev.2017.05.018

133. Webb W.C., Marzluff J.M., Omland K.E. Random interbreeding between cryptic lineages of the Common Raven: evidence for speciation in reverse. Mol Ecol. 2011;20(11):2390-2402. doi 10.1111/j.1365-294X.2011.05095.x

134. Winkler D.W., Billerman S.M., Lovette I.J. Crows, Jays, and Magpies (Corvidae), version 1.0. In: Billerman S.M., Keeney B.K., Rodewald P.G., Schulenberg T.S. (Eds) Birds of the World. Ithaca, NY, USA: Cornell Lab. of Ornithology, 2020. doi 10.2173/bow.corvid1.01

135. Yi S., Kim S.J. Vegetation changes in western central region of Korean Peninsula during the last glacial (ca. 21.1–26.1 cal kyr BP). Geosciences J. 2010;14:1-10. doi 10.1007/s12303-010-0001-9

136. Zhang H., Yan J., Zhang G., Zhou K. Phylogeography and demographic history of Chinese black-spotted frog populations (Pelophylax nigro maculata): evidence for independent refugia expansion and secondary contact. BMC Evol Biol. 2008;8:21. doi 10.1186/1471-2148-8-21

137. Zhang R., Song G., Qu Y., Alstrom P., Ramos R., Xing X., Ericson P., Fjeldsa J., Wang H., Yang X., Krustin A., Shestopalov A., Choe L.C., Fumin L. Comparative phylogeography of two widespread magpies: importance of habitat preference and breeding behavior on genetic structure in China. Mol Phylogenet Evol. 2012;65(2):562-572. doi 10.1016/j.ympev.2012.07.011

138. Zhao N., Dai C., Wang W., Zhang R., Qu Y., Song G., Chen K., Yang X., Zou F., Lei F. Pleistocene climate changes shaped the divergence and demography of Asian populations of the great tit Parus major: evidence from phylogeographic analysis and ecological niche models. J Avian Biol. 2012;43(4):297-310. doi 10.1111/j.1600-048X.2012.05474.x

139. Zink R.M. Comparative phylogeography in North American birds. Evolution. 1996;50(1):308-317. doi 10.1111/j.1558-5646.1996.tb04494.x

140. Zink R.M., Barrowclough G.F. Mitochondrial DNA under siege in avian phylogeography. Mol Ecol. 2008;17:2107-2121. doi 10.1111/j.1365-294X.2008.03737.x

141. Zink R.M., Pavlova A., Drovetski S., Rohwer S. Mitochondrial phylogeographies of five widespread Eurasian bird species. J Ornithology. 2008;149:399-413. doi 10.1007/s10336-008-0276-z

142. Zink R.M., Pavlova A., Drovetski S., Wink M., Rohwer S. Taxonomic status and evolutionary history of the Saxicola torquata complex. Mol Phylogenet Evol. 2009;52(3):769-773. doi 10.1016/j.ympev.2009.05.016


Review

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)