Env-pseudoviruses based on the HIV-1 genetic variant circulating in Siberia
https://doi.org/10.18699/vjgb-25-63
Abstract
Despite numerous efforts of the global community, it is still not possible to stop the HIV/AIDS pandemic. To stop the spread of the virus, an effective preventive vaccine is needed, as well as the search for new antiviral agents. In order to be able to quickly and adequately evaluate the developed vaccine constructs, characterize HIV-specific antibodies and potential drugs, a reliable testing method is needed. In this regard, pseudotype neutralization assays using a panel of Env-pseudoviruses of different HIV-1 subtypes has proven itself well. Currently, separate panels of Env-pseudoviruses of the main genetic subtypes of HIV-1 (A, B, C and a number CRFs) have been created. These panels are necessary to obtain standardized data sets that can be used to rank the effectiveness of the vaccine and identify promising candidates for further study. Currently, the HIV-1 subtype A6 dominates in the European part of Russia, and the recombinant form CRF63_02A6, which has currently been detected in more than 80 % of new HIV-1 cases in Siberia, dominates in Siberia. The aim of this work was to expand and characterize the collection of Env-pseudoviruses obtained on the basis of the recombinant form CRF63_02A6 of HIV-1 circulating in Siberia. In this study, two new variants of Env-pseudoviruses based on CRF63_02A6 of HIV-1 were obtained, characterized, and included in our collection. At present, the collection includes 13 Env-pseudoviruses that are CCR5-tropic. Phylogenetic analysis of the full-length nucleotide sequences of the env gene confirmed that all 13 pseudoviruses cluster with the reference sequences of the recombinant form CRF63_02A6. The Env-pseudoviruses were characterized using broadly neutralizing antibodies (bnAbs) targeting different regions of vulnerability of HIV-1 located on the surface of Env glycoprotein complexes. It was shown that the Env-pseudoviruses are sensitive to neutralization by bnAbs VRC01 and 10E8; moderately sensitive to neutralization by bnAbs PG9 and PGT126; and resistant to neutralization by antibodies 2G12 and 2F5. The resulting collection is an important addition to the existing panels of pseudoviruses against other HIV-1 subtypes in the world.
About the Authors
N. B. RudometovaRussian Federation
Koltsovo, Novosibirsk region
A. A. Fando
Russian Federation
Koltsovo, Novosibirsk region
D. N. Shcherbakov
Russian Federation
Koltsovo, Novosibirsk region
B. N. Zaitsev
Russian Federation
Koltsovo, Novosibirsk region
A. P. Rudometov
Russian Federation
Koltsovo, Novosibirsk region
L. I. Karpenko
Russian Federation
Koltsovo, Novosibirsk region
References
1. Antonova A.A., Kuznetsova A.I., Ozhmegova E.N., Lebedev A.V., Kazennova E.V., Kim K.V., Tumanov A.S., Glinkina L.N., Bobkova M.R. Genetic diversity of HIV-1 at the current stage of the epidemic in the Russian Federation: an increase in the prevalence of recombinant forms. VICH-infektciya i Immunosupressii = HIV Infection and Immunosuppressive Disorders. 2023;15(3):61-72. doi 10.22328/2077-9828-2023-15-3-61-72 (in Russian)
2. Bogacheva N.V., Blednyh N.A., Totmenin A.V., Mirdzhamalova F.O., Sokolov J.V., Gashnikova N.M. Creature a collection of up-to-date HIV-1 isolates including major Russian genetic variants of virus. VICH-infektciya i Immunosupressii = HIV Infection and Immunosuppressive Disorders. 2017;9(1):65-76. doi 10.22328/2077-9828-2017-9-1-65-76 (in Russian)
3. Chang A.Y., Chau V., Landas J.A., Pang Y. Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods. 2017;1:22-25
4. deCamp A., Hraber P., Bailer R.T., Seaman M.S., Ochsenbauer C., Kappes J., Gottardo R., Edlefsen P., Self S., Tang H., Greene K., Gao H., Daniell X., Sarzotti-Kelsoe M., Gorny M.K., Zolla-Pazner S., LaBranche C.C., Mascola J.R., Korber B.T., Montefiori D.C. Global panel of HIV-1 Env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol. 2014; 88(5):2489-2507. doi 10.1128/JVI.02853-13
5. Doores K.J., Burton D.R. Variable loop glycan dependency of the broad and potent HIV-1-neutralizing antibodies PG9 and PG16. J Virol. 2010;84(20):10510-10521. doi 10.1128/JVI.00552-10
6. Hraber P., Rademeyer C., Williamson C., Seaman M.S., Gottardo R., Tang H., Greene K., Gao H., LaBranche C., Mascola J.R., Morris L., Montefiori D.C., Korber B. Panels of HIV-1 subtype C Env reference strains for standardized neutralization assessments. J Virol. 2017;91(19):e00991-17. doi 10.1128/JVI.00991-17
7. Huang J., Ofek G., Laub L., Louder M.K., Doria-Rose N.A., Longo N.S., Imamichi H., … Wyatt R., Haynes B.F., Kwong P.D., Mascola J.R., Connors M. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature. 2012;491(7424):406-412. doi 10.1038/nature11544
8. Krumm S.A., Mohammed H., Le K.M., Crispin M., Wrin T., Poignard P., Doores K.J. Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies. Retrovirology. 2016; 13:8. doi 10.1186/s12977-016-0241-5
9. Kuznetsova A.I., Munchak Ia.M., Lebedev A.V., Tumanov A.S., Kim K.V., Antonova A.A., Ozhmegova E.N., Pronin A.Yu., Drobyshevskaya E.V., Kazennova E.V., Bobkova M.R. Genetic diversity of capsid protein (p24) in human immunodeficiency virus type-1 (HIV-1) variants circulating in the Russian Federation. Voprosy Virusologii = Problems of Virology. 2023;68(1):66-78. doi 10.36233/0507-4088-161 (in Russian)
10. Levy Y. DNA and protein HIV vaccines: how should we mix it? Lancet HIV. 2024;11(5):e274-e275. doi 10.1016/S2352-3018(24)00092-4
11. Li M., Gao F., Mascola J.R., Stamatatos L., Polonis V.R., Koutsoukos M., Voss G., Goepfert P., Gilbert P., Greene K.M., Bilska M., Kothe D.L., Salazar-Gonzalez J.F., Wei X., Decker J.M., Hahn B.H., Montefiori D.C. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol. 2005; 79(16):10108-10125. doi 10.1128/JVI.79.16.10108-10125.2005
12. Maksimenko L.V., Totmenin A.V., Gashnikova M.P., Astakhova E.M., Skudarnov S.E., Ostapova T.S., Yaschenko S.V., Meshkov I.O., Bocharov E.F., Maksyutov R.А., Gashnikova N.M. Genetic diversity of HIV-1 in Krasnoyarsk Krai: area with high levels of HIV-1 recombination in Russia. BioMed Res Int. 2020;2020:9057541. doi 10.1155/2020/9057541
13. Nair M., Gettins L., Fuller M., Kirtley S., Hemelaar J. Global and regional genetic diversity of HIV-1 in 2010-21: systematic review and analysis of prevalence. Lancet Microbe. 2024;5(11):100912. doi 10.1016/S2666-5247(24)00151-4
14. Rashid A., Li K., Feng Y., Ahmad T., Getaneh Y., Yu Y., Hu X., Abidi S.H., Shao Y. HIV-1 genetic diversity a challenge for AIDS vaccine development: a retrospective bibliometric analysis. Hum Vaccin Immunother. 2022;18(1):2014733. doi 10.1080/21645515.2021.2014733
15. Revilla A., Delgado E., Christian E.C., Dalrymple J., Vega Y., Carrera C., González-Galeano M., … Pérez-Álvarez L., Nájera R., Montefiori D.C., Seaman M.S., Thomson M.M. Construction and phenotypic characterization of HIV type 1 functional envelope clones of subtypes G and F. AIDS Res Hum Retroviruses. 2011;27(8):889-901. doi 10.1089/AID.2010.0177
16. Rudometova N.B., Shcherbakova N.S., Shcherbakov D.N., Mishenova E.V., Delgado E., Ilyichev A.A., Karpenko L.I., Thomson M.M. Genetic diversity and drug resistance mutations in reverse transcriptase and protease genes of HIV-1 isolates from Southwestern Siberia. AIDS Res Hum Retroviruses. 2021;37(9):716-723. doi 10.1089/AID.2020.0225
17. Rudometova N.B., Shcherbakov D.N., Rudometov A.P., Ilyi chev A.A., Karpenko L.I. Model systems of human immunodeficiency virus (HIV-1) for in vitro efficacy assessment of candidate vaccines and drugs against HIV-1. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2022a;26(2):214-221. doi 10.18699/VJGB22-26
18. Rudometova N.B., Shcherbakova N.S., Shcherbakov D.N., Taranov O.S., Zaitsev B.N., Karpenko L.I. Construction and characterization of HIV-1 env-pseudoviruses of the recombinant form CRF63_02A and subtype A6. Bull Exp Biol Med. 2022b;172(6):729-733. doi 10.1007/s10517-022-05466-7
19. Sanders R.W., Venturi M., Schiffner L., Kalyanaraman R., Katinger H., Lloyd K.O., Kwong P.D., Moore J.P. The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J Virol. 2002;76(14):7293-7305. doi 10.1128/jvi.76.14.7293-7305.2002
20. Sivay M.V., Maksimenko L.V., Osipova I.P., Nefedova A.A., Gashnikova M.P., Zyryanova D.P., Ekushov V.E., Totmenin A.V., Nalimova T.M., Ivlev V.V., Kapustin D.V., Pozdnyakova L.L., Skudarnov S.E., Ostapova T.S., Yaschenko S.V., Nazarova O.I., Chernov A.S., Ismailova T.N., Maksutov R.A., Gashnikova N.M. Spatiotemporal dynamics of HIV-1 CRF63_02A6 sub-epidemic. Front Microbiol. 2022;13:946787. doi 10.3389/fmicb.2022.946787
21. Stefic K., Bouvin-Pley M., Essat A., Visdeloup C., Moreau A., Goujard C., Chaix M.L., Braibant M., Meyer L., Barin F. Sensitivity to broadly neutralizing antibodies of recently transmitted HIV-1 clade CRF02_AG viruses with a focus on evolution over time. J Virol. 2019;93(2):e01492-18. doi 10.1128/JVI.01492-18
22. Thavarajah J.J., Hønge B.L., Wejse C.M. The use of broadly neutralizing antibodies (bNAbs) in HIV-1 treatment and prevention. Viruses. 2024;16(6):911. doi 10.3390/v16060911
23. Trkola A., Moore P.L. Vaccinating people living with HIV: a fast track to preventive and therapeutic HIV vaccines. Lancet Infect Dis. 2024; 24(4):e252-e255. doi 10.1016/S1473-3099(23)00481-4
24. Walsh S.R., Seaman M.S. Broadly neutralizing antibodies for HIV-1 prevention. Front Immunol. 2021;12:712122. doi 10.3389/fimmu.2021.712122
25. Wang H., Yuan T., Li T., Li Y., Qian F., Zhu C., Liang S., Hoffmann D., Dittmer U., Sun B., Yang R. Evaluation of susceptibility of HIV-1 CRF01_AE variants to neutralization by a panel of broadly neutralizing antibodies. Arch Virol. 2018;163(12):3303-3315. doi 10.1007/s00705-018-4011-7
26. Wieczorek L., Sanders-Buell E., Zemil M., Lewitus E., Kavusak E., Heller J., Molnar S., … Ake J., Krebs S.J., Peel S., Tovanabutra S., Polonis V.R. Evolution of HIV-1 envelope towards reduced neutralization sensitivity, as demonstrated by contemporary HIV-1 subtype B from the United States. PLoS Pathog. 2023;19(12):e1011780. doi 10.1371/journal.ppat.1011780
27. Wieczorek L., Chang D., Sanders-Buell E., Zemil M., Martinez E., Schoen J., Chenine A.L., … Michael N.L., Crowell T.A., Ake J.A., Tovanabutra S., Polonis V.R. Differences in neutralizing antibody sensitivities and envelope characteristics indicate distinct antigenic properties of Nigerian HIV-1 subtype G and CRF02_AG. Virol J. 2024;21(1):148. doi 10.1186/s12985-024-02394-y
28. Wu X., Yang Z.Y., Li Y., Hogerkorp C.M., Schief W.R., Seaman M.S., Zhou T., … Kwong P.D., Roederer M., Wyatt R.T., Nabel G.J., Mascola J.R. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science. 2010;329(5993): 856-861. doi 10.1126/science.1187659