Механизмы регуляции передачи этиленового сигнала у растений


https://doi.org/10.18699/VJ15.105

Полный текст:


Аннотация

Фитогормон этилен регулирует широкий спектр физиологических процессов на разных этапах онтогенеза растений и ответов на воздействие различных стрессовых факторов. Среди прочих под контролем этого фитогормона находятся такие практически значимые характеристики сельскохозяйственных культур как скорость созревания плодов и устойчивость растений к неблагоприятным условиям. Вследствие этого понимание молекулярных механизмов, лежащих в основе действия этилена, на сегодняшний день является одним из основных вопросов биологии растений, как с точки зрения фундаментальных исследований, так и для решения практических задач. Биосинтез этилена из аминокислоты метионина и основные этапы пути передачи его сигнала в клетке от мембранных рецепторов до эффекторных генов изучены достаточно детально, и результаты этих исследований представлены в виде многочисленных обзоров. Гораздо меньше известно о генетической регуляции этих двух процессов, хотя именно благодаря этой регуляции обеспечивается быстрая и адекватная реакция растения на различные внутренние и внешние стимулы, а также разнообразие физиологических ответов растения на действие этилена. В настоящем обзоре обобщены данные о механизмах регуляции биосинтеза этилена и передачи его сигнала. Описываются ключевые факторы транскрипционной и посттрансляционой регуляции, контролирующие экспрессию и стабильность ключевых компонентов путей биосинтеза и передачи сигнала этилена, а также множественные обратные связи, дополняющие линейную модель сигнального пути. Особое внимание уделяется роли взаимодействия этилена с сигнальными путями других фитогормонов. Разные механизмы их взаимодействия проиллюстрированы на примере синергии или антагонизма этилена с ауксином, жасмонатами, цитокнинами и брассиностероидами. Кроме того, обсуждаются возможные молекулярные основы разнообразия физиологических ответов на этилен.

Об авторах

Е. В. Землянская
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет», Новосибирск, Россия
Россия


Н. А. Омельянчук
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет», Новосибирск, Россия
Россия


А. А. Ермаков
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


В. В. Миронова
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет», Новосибирск, Россия
Россия


Список литературы

1. Кудрякова Н.В., Бурханова Э.А., Яковлева Л.А., Ракитин В.Ю., Смит А.Р., Холл М.А., Кулаева О.Н. Этилен и цитокинины в регуляции старения срезанных листьев мутанта eti5 Arabidopsis thaliana и исходного дикого типа. Физиология растений. 2001;48(5):723-727.

2. Черных О.А., Левицкий В.Г., Омельянчук Н.А., Миронова В.В. Компьютерный анализ и функциональная аннотация сайтов связывания транскрипционных факторов AP2/ERF в геноме Arabidopsis thaliana L. Вавиловский журнал генетики и селекции. 2014;18(4/2):887-897.

3. Abel S., Nguyen M.D., Chow W., Theologis A. ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana: structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin [corrected]. J. Biol. Chem. 1995;270(32):19093-19099.

4. Abeles F.B., Morgan P.W., Saltveit M.E. Ethylene in plant biology. San Diego: Acad. Press, 1992.

5. Alexander L., Grierson D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 2002;53(377):2039-2055.

6. Alonso J.M., Stepanova A.N., Solano R., Wisman E., Ferrari S., Ausubel F.M., Ecker J.R. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2003;100(5):2992-2997.

7. An F., Zhang X., Zhu Z., Ji Y., He W., Jiang Z., Li M., Guo H. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res. 2012;22(5):915-927. DOI: 10.1038/cr.2012.29

8. An F., Zhao Q., Ji Y., Li W., Jiang Z., Yu X., Zhang C., Han Y., He W., Liu Y., Zhang S., Ecker J.R., Guo H. Ethylene-induced stabilization of ETHYLENE-INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell. 2010;22(7):2384-2401. DOI: 10.1105/tpc.110.076588

9. Chang K.N., Zhong S., Weirauch M.T., Hon G., Pelizzola M., Li H., Huang S.S.C., Schmitz R.J., Urich M.A., Kuo D., Nery J.R., Qiao H., Yang A., Jamali A., Chen H., Ideker T., Ren B., Bar-Joseph Z., Hughes T.R., Ecker J.R. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife. 2013;2:e00675. DOI: 10.7554/eLife.00675

10. Cary A.J., Liu W., Howell S.H. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 1995;107(4):1075-1082. DOI:10.1104/pp.107.4.1075

11. Chae H.S., Faure F., Kieber J.J. The eto1, eto2 and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of the ACS protein. Plant Cell. 2003;15(2):545-559. DOI: 10.1105/tpc.006882

12. Chen Y.F., Shakeel S.N., Bowers J., Zhao X.C., Etheridge N., Schaller G.E. Ligand-induced degradation of the ethylene receptor ETR2. J. Biol. Chem. 2007;282(34):24752-24758.

13. Chilley P.M., Casson S.A., Tarkowski P., Hawkins N., Wang K.L., Hussey P.J., Beale M., Ecker J.R., Sandberg G.K., Lindsey K. The POLARIS peptide of Arabidopsis regulates auxin transport and root growth via effects on ethylene signaling. Plant Cell. 2006;18(11):3058-3072.

14. Cho Y.H., Yoo S.D. Novel connections and gaps in ethylene signaling from the ER membrane to the nucleus. Front. Plant Sci. 2015;5:733. DOI: 10.3389/fpls.2014.00733

15. De Paepe A., Vuylsteke M., Van Hummelen P., Zabeau M., Van Der Straeten D. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J. 2004;39(4):537-559. DOI: 10.1111/j.1365-313X.2004.02156.x

16. Díaz J., Álvarez-Buylla E.R. A model of the ethylene signaling pathway and its gene response in Arabidopsis thaliana: Pathway crosstalk and noise-filtering properties. Chaos. 2006;16(2):023112. DOI: 10.1063/1.2189974

17. Dong C.H., Rivarola M., Resnick J.S., Maggin B.D., Chang C. Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant J. 2008;53(2):275-286.

18. Dugardeyn J., Vandenbussche F., Van Der Straeten D. To grow or not to grow: what can we learn on ethylene–gibberellin cross-talk by in silico gene expression analysis? J. Exp. Bot. 2008;59(1):1-16. DOI: 10.1093/jxb/erm349

19. Ecker J.R. The ethylene signal transduction pathway in plants. Science. 1995;268:667-675.

20. Fujimoto S.Y., Ohta M., Usui A., Shinshi H., Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell. 2000;12(3):393-404.

21. Gallie D.R., Geisler-Lee J., Chen J., Jolley B. Tissue-specific expression of the ethylene biosynthetic machinery regulates root growth in maize. Plant. Mol. Biol. 2009;69(1-2):195-211. DOI: 10.1007/s11103-008-9418-1

22. Gazzarrini S., McCourt P. Cross-talk in plant hormone signalling: What Arabidopsis mutants are telling us. Ann. Bot. 2003;91(6):605-612. DOI: 10.1093/aob/mcg064

23. Giovannoni J.J. Fruit ripening mutants yield insights into ripening control. Curr. Opin. Plant Biol. 2007;10(3):283-289. DOI: 10.1016/j.pbi.2007.04.008

24. Han L., Li G.J., Yang KY., Mao G., Wang R., Liu Y., Zhang S. Mitogenactivated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J. 2010;64(1):114-127. DOI: 10.1111/j.1365-313X.2010.04318.x

25. Hansen M., Chae H.S., Kieber J.J. Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J. 2009;57(4):606-614. DOI:10.1111/j.1365-313X.2008.03711.x

26. Ikeda Y., Men S., Fischer U., Stepanova A.N., Alonso J.M., Ljung K., Grebe M. Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nat. Cell Biol. 2009;11(6):731-738. DOI: 10.1038/ncb1879

27. Itkin M., Seybold H., Breitel D., Rogachev I., Meir S., Aharoni A. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J. 2009;60(6):1081-1095. DOI: 10.1111/j.1365-313X.2009.04064.x

28. Ito Y., Kitagawa M., Ihashi N., Yabe K., Kimbara J., Yasuda J., Ito H., Inakuma T., Hiroi S., Kasumi T. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J. 2008;55(2):212-223. DOI: 10.1111/j.1365-313X.2008.03491.x

29. Joo S., Seo Y.S., Kim S.M., Hong D.K., Park K.Y., Kim W.T. Brassinosteroid induction of AtACS4 encoding an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase 4 in Arabidopsis seedlings. Physiol. Plant. 2006;126(4):592-604. DOI: 10.1111/j.1399-3054.2005.00602.x

30. Ju C., Chang C. Advances in ethylene signalling: protein complexes at the endoplasmic reticulum membrane. AoB Plants. 2012:pls031. DOI:10.1093/aobpla/pls031

31. Ju C., Yoon G.M., Shemansky J.M., Lin D.Y., Ying Z.I., Chang J., Garrett W.M., Kessenbrock M., Groth G., Tucker M.L., Cooper B., Kieber J.J., Chang C. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2012;109(47):19486-19491. DOI: 10.1073/pnas.1214848109

32. Karlova R., Chapman N., David K., Angenent G.C., Seymour G.B., de Maagd R.A. Transcriptional control of fleshy fruit development and ripening. J. Exp. Bot. 2014;65(16):4527-4541. DOI:10.1093/jxb/eru316

33. Kendrick M.D., Chang C. Ethylene signaling: new levels of complexity and regulation. Curr. Opin. Plant Biol. 2008;11(5):479-485. DOI: 10.1016/j.pbi.2008.06.011

34. Kevany B.M., Tieman D.M., Taylor M.G., Cin V.D., Klee H.J. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J. 2007;51(3):458-467. DOI: 10.1111/j.1365-313X.2007.03170.x

35. Kosugi S., Ohashi Y. Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog. Nucleic Acids Res. 2000;28(4):960-967.

36. Konishi M., Yanagisawa S. Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant J. 2008;55(5):821-831. DOI: 10.1111/j.1365-313X.2008.03551.x

37. Lacey R.F., Binder B.M. How plants sense ethylene gas — The ethylene receptors. J. Inorg. Biochem. 2014;133:58-62. DOI: 10.1016/j.jinorgbio

38. Lewis D.R., Negi S., Sukumar P., Muday G.K. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development. 2011;138(16):3485-3495. DOI:10.1242/dev.065102

39. Li G., Meng X., Wang R., Mao G., Han L., Liu Y., Zhang S. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genetics. 2012;8(6):e1002767. DOI: 10.1371/journal.pgen.1002767

40. Liu Q., Wen C.K. Cooperative ethylene receptor signaling. Plant Signal. Behav. 2012a;7(8):1009-1013. DOI: 10.4161/psb.20937

41. Liu Q., Wen C.K. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor genes. Plant Physiol. 2012b;158(3):1193-1207. DOI: 10.1104/pp.111.187757

42. Lorenzo O., Piqueras R., Sanchez-Serrano J.J., Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell. 2003;15(1):165-178. DOI: 10.1105/tpc.007468

43. Ludwikówa A., Cieśla A., Kasprowicz-Maluśki A., Mituła F., Tajdel M., Gałgański Ł., Ziółkowski P.A., Kubiak P., Małecka A., Piechalak A., Szabat M., Górska A., Dąbrowski M., Ibragimow I., Sadowski J. Arabidopsis protein phosphatase 2C ABI1 interacts with type I ACC synthases and is involved in the regulation of ozone-induced ethylene biosynthesis. Mol. Plant. 2014;7(6):960–976. DOI: 10.1093/mp/ssu025

44. Lyzenga W.J., Stone S.L. Regulation of ethylene biosynthesis through protein degradation. Plant Signal. Behav. 2012;7(11):1438-1442. DOI: 10.4161/psb.21930

45. McKeon T., Yang S.F. Biosynthesis and metabolism of ethylene. In: Plant hormones and their role in plant growth and development. P.J. Davides (ed.); Dordrecht: Martinus Nijhoff Publishers, 1987:94-112.

46. McManus M.T The plant hormone ethylene. Annual Plant Reviews. Oxford: Wiley-Blackwell, 2012(44).

47. Merchante C., Alonso J.M., Stepanova A.N. Ethylene signaling: simple ligand, complex regulation. Curr. Opin. Plant Biol. 2013;16(5):554-560. DOI: 10.1016/j.pbi.2013.08.001

48. Muday G.K., Rahman A., Binder B.M. Auxin and ethylene: collaborators or competitors? Trends Plant Sci. 2012;17(4):181-195. DOI: 10.1016/j.tplants.2012.02.001

49. Murr D.P., Yang S.F. Conversion of 5’-methylthioadenosine to methionine by apple tissue. Phytochemistry. 1975;14:1291-1292. DOI: 10.1016/S0031- 9422(00)98613-8.

50. Ohme-Takagi M., Shinshi H. Ethylene-lnducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell. 1995;7(2):173-182.

51. Pirrello J., Prasad B.C., Zhang W., Chen K., Mila I., Zouine M., Latché A., Pech J.C., Ohme-Takagi M., Regad F., Bouzayen M. Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biol. 2012;12:190. DOI: 10.1186/1471-2229-12-190

52. Pre M., Atallah M., Champion A., De Vos M., Pieterse C.M., Memelink J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 2008;147(3):1347-1357. DOI: 10.1104/pp.108.117523

53. Qiao H., Shen Z., Huang S.C., Schmitz R.J., Urich M.A., Briggs S.P., Ecker J.R. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science. 2012;338(6105):390-393. DOI: 10.1126/science.1225974

54. Riechmann J. L., Heard J., Martin G., Reuber L., Jiang C.-Z., Keddie J., Adam L., Pineda O., Ratcliffe O. J., Samaha R. R., Creelman R., Pilgrim M., Broun P., Zhang J. Z., Ghandehari D., Sherman B. K., Yu G.-L. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000;290(5499):2105-2110.

55. Rudus I., Sasiak M., Kepczynski J. Regulation of ethylene biosynthesis at the level of 1-aminocyclopropane-1-carboxylate oxidase (ACO) gene. Acta Physiol. Plant. 2013;35(2):295-307. DOI: 10.1007/s11738-012-1096-6

56. Ruzicka K., Ljung K., Vanneste S., Podhorska R., Beeckman T., Friml J., Benkova E. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell. 2007;19(7):2197-2212. DOI: 10.1105/tpc.107.052126

57. Rzewuski G., Suter M. Ethylene biosynthesis and signaling in rice. Plant Sci. 2008;175:32-42. DOI: 10.1016/j.plantsci.2008.01.012

58. Shakeel S., Gao Z., Amir M., Chen Y.F., Rai M.I., Haq N.U., Schaller G.E. Ethylene regulates levels of ethylene-receptor/CTR1 signaling complexes in Arabidopsis thaliana. J. Biol. Chem. 2015;290(19):12415-12424. DOI: 10.1074/jbc.M115.652503

59. Shin K., Lee S., Song W.Y., Lee R.A., Lee I., Ha K., Koo J.C., Park S.K., Nam H.G., Lee Y., Soh M.S. Genetic Identification of ACCRESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana. Plant Cell Physiol. 2015;56(3):572-582. DOI: 10.1093/pcp/pcu201

60. Skottke K.R., Yoon G.M., Kieber J.J., DeLong A. Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet. 2011;7(4):e1001370. DOI: 10.1371/journal.pgen.1001370

61. Solano R., Stepanova A., Chao Q., Ecker J.R. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENEINSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 1998;12(23):3703-3714.

62. Stepanova A.N., Alonso J.M. Ethylene signaling and response: where different regulatory modules meet. Curr. Opin. Plant Biol. 2009;12(5):548-555. DOI: 10.1016/j.pbi.2009.07.009

63. Stepanova A.N., Hoyt J.M., Hamilton A.A., Alonso J.M. A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell. 2005;17(8):2230-2242. DOI: 10.1105/tpc.105.033365

64. Stepanova A.N., Yun J., Likhacheva A.V., Alonso J.M. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell. 2007;19(7):2169-2185. DOI: 10.1105/tpc.107.052068

65. Swarup R., Perry P., Hagenbeek D., Van Der Straeten D., Beemster G.T.S., Sandberg G., Bhalerao R., Ljung K., Bennett M.J. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell. 2007;19(7):2186-2196. DOI: 10.1105/tpc.107.052100

66. Takatsuka H., Umeda M. Hormonal control of cell division and elongation along differentiation trajectories in roots. J. Exp. Bot. 2014;65(10):2633-2643. DOI: 10.1093/jxb/ert485

67. Tsuchisaka A., Theologis A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 2004;136(2):2982-3000. DOI:10.1104/pp.104.049999

68. Tsuchisaka A., Yu G., Jin H., Alonso J.M., Ecker J.R., Zhang X., Gao S., Theologis A. A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics. 2009;183(3):979-1003. DOI: 10.1534/genetics.109.107102

69. Van de Poel B., Bulens I., Hertog M.L., Nicolai B.M., Geeraerd A.H. A transcriptomics-based kinetic model for ethylene biosynthesis in tomato (Solanum lycopersicum) fruit: development, validation and exploration of novel regulatory mechanisms. New Phytol. 2014;202(3):952-963. DOI: 10.1111/nph.12685

70. Van de Poel B., Bulens I., Markoula A., Hertog M.L.A.T.M., Dreesen R., Wirtz M., Vandoninck S., Oppermann Y., Keulemans J., Hell R., Waelkens E., De Proft M.P., Sauter M., Nicolai B.M., Geeraerd A.H. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang Cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. Plant Physiol. 2012;160(3):1498-1514. DOI: 10.1104/pp.112.206086

71. Van de Poel B., Van Der Straeten D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front. Plant Sci. 2014;5:640. DOI: 10.3389/fpls.2014.00640

72. Voß U., Bishopp A., Farcot E., Bennett M.J. Modelling hormonal response and development. Trends Plant Sci. 2014;19(5):311-319. DOI: 10.1016/j.tplants.2014.02.004

73. Vogel J.P., Woeste K.E., Theologis A., Kieber J.J. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc. Natl. Acad. Sci. USA. 1998;95(8):4766-4771.

74. Vrebalov J., Ruezinsky D., Padmanabhan V., White R., Medrano D., Drake R., Schuch W., Giovannoni J. A MADS-box gene necessary for fruit ripening at the Tomato Ripening-Inhibitor (Rin) locus. Science. 2002;296:343-346. DOI: 10.1126/science.1068181

75. Wang K.L.-C., Yoshida H., Lurin C., Ecker J.R. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature. 2004;428(6986):945-950.

76. Xiong L., Xiao D., Xu X., Guo Z., Wang N.N. The non-catalytic Nterminal domain of ACS7 is involved in the post-translational regulation of this gene in Arabidopsis. J. Exp. Bot. 2014;65(15):4397-4408. DOI: 10.1093/jxb/eru211

77. Yamagami T., Tsuchisaka A., Yamada K., Haddon W.F., Harden L.A., Theologis A. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 2003;278(49):49102-49112.

78. Yang S.F., Hoffman N.E. Ethylene biosynthesis and its regulation in higher-plants. Annu. Rev. Plant Physiol. Mol. Biol. 1984;35:155–189. DOI: 10.1146/annurev.pp.35.060184.001103

79. Zarei A., Korbes A.P., Younessi P., Montiel G., Champion A., Memelink J. Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol. Biol. 2011;75(4-5):321-331. DOI: 10.1007/s11103-010-9728-y

80. Zhang J., Yu J., Wen C.K. An alternate route of ethylene receptor signaling. Front. Plant Sci. 2014a;5:648. DOI: 10.3389/fpls.2014.00648

81. Zhang X., Zhu Z., An F., Hao D., Li P., Song J., Yi C., Guo H. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell. 2014b;26(3):1105-1117. DOI: 10.1105/tpc.113.122002

82. Zhao Q., Guo H.W. Paradigms and paradox in the ethylene signaling pathway and interaction network. Mol. Plant. 2011;4(4):626-634. DOI: 10.1093/mp/ssr042

83. Zhao R., Xie H., Lv S., Zheng Y., Yu M., Shen L., Sheng J. LeMAPK4 participated in cold-induced ethylene production in tomato fruit. J. Sci. Food Agric. 2013;93(5):1003-1009. DOI: 10.1002/jsfa.5790

84. Zhu Z., An F., Feng Y., Li P., Xue L., Mu A., Jiang Z., Kim J.M., To T.K., Li W., Zhang X., Yu Q., Dong Z., Chen W.Q., Seki M., Zhou J.M., Guo H. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108(30):12539-12544. DOI: 10.1073/pnas.1103959108

85. Zhu Z., Lee B. Friends or Foes: New insights in jasmonate and ethylene co-actions. Plant Cell Physiol. 2015;56(3):414-420.


Дополнительные файлы

Просмотров: 353

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)