Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Molecular genetic study of triploidy and the hydatidiform mole in pregnancy loss: analysis of 10,000 consecutive cases

https://doi.org/10.18699/vjgb-25-67

Abstract

   Approximately 10–15 % of clinically recognized pregnancies result in miscarriage, with chromosomal abnormalities identified in about 50 % of early pregnancy losses (PL). Triploidy accounts for approximately 12 % of all chromosomal abnormalities in miscarriages. The additional haploid set of chromosomes in triploidy may be of paternal (diandric tri ploidy) or maternal (digynic triploidy) origin. Diandric triploidy is associated with a partial hydatidiform mole (PHM), while pregnancies involving diploid embryos with two paternal genomes (and loss of the maternal nuclear genome) are the most common cause of a complete hydatidiform mole (CHM). The hydatidiform mole (HM) is the most prevalent form of gestational trophoblastic disease. Genotyping of products of conception (POC) is currently considered a reliable method for confirming HM and distinguishing its subtypes.

   The aim of this study was to use DNA genotyping of POCs to detect cases of triploidy, estimate the frequency of HM and its subtypes, and analyze the molecular and clinical characteristics of triploid pregnancies, CHM, and PHM in a Russian population.

   Between 2018 and 2024, a total of 10,000 consecutive PL cases were analyzed at the Medical Genetic Center Progen (Moscow). The main clinical indications included spontaneous miscarriage, missed miscarriage, and anembryonic pregnancy. DNA genotyping was performed using a five-color multiplex QF-PCR method, which included profiling of 26 autosomal STR markers, as well as DYS437, DXS6809, the SRY gene, and 30 markers from homologous regions located on different chromosomes. CHM was diagnosed based on the homozygosity of all STR markers. Triploidy was identified by analyzing peak area ratios of non-homozygous STR markers, which exhibited characteristic patterns of approximately 2:1 or 1:1:1. In our cohort, chromosomal abnormalities were identified in 58.8 % of all PL cases. Triploidy was detected in 8.3 % of the total sample, representing 14.3 % of all chromosomally abnormal POCs. Diandric triploidy accounted for 43 % of triploid cases. The prevalence of CHM was 0.11 %. The median age of women with triploidy was 32.1 years, and 27.9 years for those with CHM. Given the observed frequencies of PHM and CHM in our cohort, along with the relatively young maternal age associated with these conditions, enhancing current diagnostic protocols for HM – particularly through the incorporation of DNA genotyping of POCs – is essential for the effective prevention and timely diagnosis of post-molar malignant neoplasms in this population.

About the Authors

V. P. Pushkarev
Medical Genetic Center LLC Progen; Bochkov Research Centre for Medical Genetics
Russian Federation

Moscow



A. S. Masycheva
Medical Genetic Center LLC Progen
Russian Federation

Moscow



E. A. Glazyrina
Medical Genetic Center LLC Progen
Russian Federation

Moscow



T. E. Serebrenikova
Medical Genetic Center LLC Progen
Russian Federation

Moscow



V. B. Chernykh
Bochkov Research Centre for Medical Genetics
Russian Federation

Moscow



References

1. Aleshkina O.S., Konovalov O.E. The dynamics of early reproductive losses in the Ryazan region. Science of the Young (Eruditio Juvenium). 2023;11(3):318-326. doi: 10.23888/HMJ2023113318-326 (in Russian)

2. Buza N., Hui P. Partial hydatidiform mole: histologic parameters in correlation with DNA genotyping. Int J Gynecol Pathol. 2013;32(3): 307-315. doi: 10.1097/PGP.0b013e3182626011

3. Buza N., Hui P. Genotyping diagnosis of gestational trophoblastic disease: frontiers in precision medicine. Mod Pathol. 2021;34(9): 1658-1672. doi 10.1038/s41379-021-00831-9

4. Candelier J.J. The hydatidiform mole. Cell Adh Migr. 2016;10(1-2): 226-235. doi: 10.1080/19336918.2015.1093275

5. Essers R., Lebedev I.N., Kurg A., Fonova E.A., Stevens S.J.C., Koeck R.M., von Rango U., … Paulussen A., Hoischen A., Brunner H.G., Salumets A., Zamani Esteki M. Prevalence of chromosomal alterations in first-trimester spontaneous pregnancy loss. Nat Med. 2023;29(12):3233-3242. doi: 10.1038/s41591-023-02645-5

6. Fukunaga M., Katabuchi H., Nagasaka T., Mikami Y., Minamiguchi S., Lage J.M. Interobserver and intraobserver variability in the diagnosis of hydatidiform mole. Am J Surg Pathol. 2005;29(7):942-947. doi: 10.1097/01.pas.0000157996.23059.c1

7. Furtado L.V., Paxton C.N., Jama M.A., Tripp S.R., Wilson A.R., Lyon E., Jarboe E.A., Thaker H.M., Geiersbach K.B. Diagnostic utility of microsatellite genotyping for molar pregnancy testing. Arch Pathol Lab Med. 2013;137(1):55-63. doi: 10.5858/arpa.2012-0047-OA

8. Gergely L., Korbeľ M., Danihel Ľ., Repiská V., Tomka M., McCullough L., Priščáková P. Trisomy 16 mimicking hydatidiform mole. Ceska Gynekol. 2024;89(5):396-399. doi: 10.48095/cccg2024396

9. Golubovsky M.D. Postzygotic diploidization of triploids as a source of unusual cases of mosaicism, chimerism and twinning. Hum Reprod. 2003;18(2):236-242. doi: 10.1093/humrep/deg060

10. Hui P., Buza N., Murphy K.M., Ronnett B.M. Hydatidiform moles: genetic basis and precision diagnosis. Annu Rev Pathol. 2017;12:449-485. doi: 10.1146/annurev-pathol-052016-100237

11. Jenderny J. Chromosome aberrations in a large series of spontaneous miscarriages in the German population and review of the literature. Mol Cytogenet. 2014;5(7):38. doi: 10.1186/1755-8166-7-38

12. Joyce C.M., Fitzgerald B., McCarthy T.V., Coulter J., O’Donoghue K. Advances in the diagnosis and early management of gestational trophoblastic disease. BMJ Med. 2022;1(1):e000321. doi: 10.1136/bmjmed-2022-000321

13. Massalska D., Ozdarska K., Roszkowski T., Bijok J., Kucińska-Chahwan A., Panek G.M., Zimowski J.G. Distribution of diandric and digynic triploidy depending on gestational age. J Assist Reprod Genet. 2021;38(9):2391-2395. doi: 10.1007/s10815-021-02202-4

14. Mateykovich E.A., Novikova V.A., Radzinsky V.E. Intraterritorial differences in reproductive losses. Meditsinskiy Sovet = Medical Council. 2023;17(13):191-199. doi: 10.21518/ms2023-252 (in Russian)

15. Murdoch S., Djuric U., Mazhar B., Seoud M., Khan R., Kuick R., Bagga R., Kircheisen R., Ao A., Ratti B., Hanash S., Rouleau G.A., Slim R. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38(3):300-302. doi: 10.1038/ng1740

16. Nguyen N.M.P., Ge Z.J., Reddy R., Fahiminiya S., Sauthier P., Bagga R., Sahin F.I., … Sahoo T., Ao A., Majewski J., Taketo T., Slim R. Causative mutations and mechanism of androgenetic hydatidiform moles. Am J Hum Genet. 2018;103(5):740-751. doi: 10.1016/j.ajhg.2018.10.007

17. Parry D.A., Logan C.V., Hayward B.E., Shires M., Landolsi H., Diggle C., Carr I., … Malik S., Taylor G.R., Johnson C.A., Bonthron D.T., Sheridan E.G. Mutations causing familial biparental hydatidiform mole implicate С6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet. 2011; 89(3):451-458. doi: 10.1016/j.ajhg.2011.08.002

18. Pesik V.Y., Fedunin A.A., Agdzhoyan A.T., Utevska O.M., Chukhraeva M.I., Evseeva I.V., Churnosov M.I., Lependina I.N., Bogunov Y.V., Bogunova A.A., Ignashkin M.A., Yankovsky N.K., Balanovska E.V., Orekhov V.A., Balanovsky O.P. Analysis of genetic diversity of Russian regional populations based on STR markers used in DNA identification. Russian Journal of Genetics. 2014; 50(6):626-633. doi: 10.1134/S1022795414060088

19. Ronnett B.M. Hydatidiform moles: ancillary techniques to refine diagnosis. Arch Pathol Lab Med. 2018;142(12):1485-1502. doi: 10.5858/arpa.2018-0226-RA

20. Sazhenova E.A., Filippova M.O., Lebedev I.N. Epigenetic perspectives of hydatidiform mole: mechanisms of genomic imprinting disorders and issues of molecular genetic diagnostics. Medical Ge netics. 2009;8(3):3-12 (in Russian)

21. Smolyanitsky A.G., Ivanov P.L., Kornienko I.V., Zamaraev V.S., Perepechina I.O., Komarovsky Yu.A., Pushkarev V.P., Khromov-Borisov N.N. Towards Russian reference population data on STR loci. Int Congr Ser. 2004;1261:242-244. doi: 10.1016/S0531-5131(03)01610-8

22. Soler A., Morales C., Mademont-Soler I., Margarit E., Borrell A., Borobio V., Muñoz M., Sánchez A. Overview of chromosome abnormalities in first trimester miscarriages: a series of 1,011 consecutive chorionic villi sample karyotypes. Cytogenet Genome Res. 2017; 152(2):81-89. doi: 10.1159/000477707

23. Ul’rikh E.A., Rumyantsev A.A., Teletaeva G.M., Khokhlova S.V., Urmancheeva A.F., Tyulyandina A.S. Malignant trophoblastic tumors. Malignant Tumors. 2024;14(3s2-2):189-206. doi: 10.18027/2224-5057-2024-14-3s2-1.2-07 (in Russian)

24. Zavarin V., Ilina V., Krassotkin Y., Makarova T., Sutiagina D., Semikhodskii A. Evaluation of sensitivity and specificity of sibship determination in the Caucasian population of the Russian Federation using the 23 STR loci VeriFiler panel. Forensic Sci Int Genet Suppl Ser. 2019;7(1):56-58. doi: 10.1016/j.fsigss.2019.09.023


Review

Views: 64


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)