Preview

Vavilov Journal of Genetics and Breeding

Advanced search

A family case of a rare Xq28 duplication

https://doi.org/10.18699/vjgb-25-69

Abstract

   Genetic factors contribute to the etiology of intellectual disability in 25–50 % of cases. Chromosomal abnormalities, such as microdeletions and microduplications, are the most significant genetic causes. We examined a family where two boys, aged 8 and 7, were diagnosed with mild intellectual disability. Using array-based comparative genomic hybridization, we detected a duplication of Xq28 in both brothers on the X chromosome inherited from a healthy mother with skewed (88 %) X-chromosome inactivation. The size of the rearrangement is 439.6 kilobases (kb). Eight genes are located in this region, including F8, MTCP1, BRCC3, VBP1, RAB39B, CLIC2, FUNDC2, and CMC4. This chromosomal region overlaps with the region of Xq28 duplication syndrome (OMIM 300815), characterized by intellectual disability, behavioral and psychiatric disorders, recurrent infections, atopic diseases, and specific facial features in affected male individuals. Whole-exome sequencing did not reveal pathogenic or likely pathogenic variants associated with neurodevelopmental disorders. These disorders have been previously linked to X-linked recessive single-nucleotide variants in RAB39B (OMIM 300271, 311510) and CLIC2 (OMIM 300886). An assessment of the clinical significance of the identified duplication, using the AutoCNV internet resource and original data, allowed us to classify this variant as pathogenic. This implies that the identified duplication may be the cause of intellectual disability in patients.

About the Authors

A. E. Kopytova
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”; Pavlov First St. Petersburg State Medical University
Russian Federation

Leningradskaya Oblast; Gatchina; St. Petersburg



E. N. Tolmacheva
Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk



D. A. Emelina
V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology of the Ministry of Health of the Russian Federation
Russian Federation

St. Petersburg



O. S. Glotov
Federal Scientific and Clinical Center of Infectious Diseases of the Federal Medical and Biological Agency
Russian Federation

St. Petersburg



V. V. Miroshnikova
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”; Pavlov First St. Petersburg State Medical University
Russian Federation

Leningradskaya Oblast; Gatchina; St. Petersburg



T. S. Usenko
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”; Pavlov First St. Petersburg State Medical University
Russian Federation

Leningradskaya Oblast; Gatchina; St. Petersburg



O. Yu. Vasilyeva
Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk



E. D. Kasyanov
V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology of the Ministry of Health of the Russian Federation
Russian Federation

St. Petersburg



E. A. Fonova
Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk



I. V. Makarov
V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology of the Ministry of Health of the Russian Federation; North-Western State Medical University named after I.I. Mechnikov
Russian Federation

St. Petersburg



A. D. Lobanov
Siberian State Medical University
Russian Federation

Tomsk



G. E. Mazo
V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology of the Ministry of Health of the Russian Federation
Russian Federation

St. Petersburg



S. N. Pchelina
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”; Pavlov First St. Petersburg State Medical University
Russian Federation

Leningradskaya Oblast; Gatchina; St. Petersburg



I. N. Lebedev
Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk



References

1. Amos-Landgraf J.M., Cottle A., Plenge R.M., Friez M., Schwartz C.E., Longshore J., Willard H.F. X chromosome­inactivation patterns of 1,005 phenotypically unaffected females. Am J Hum Genet. 2006; 79(3):493-499. doi: 10.1086/507565

2. Andersen E.F., Baldwin E.E., Ellingwood S., Smith R., Lamb A.N. Xq28 duplication overlapping the int22h-1/int22h-2 region and including RAB39B and CLIC2 in a family with intellectual and devel­ opmental disability. Am J Med Genet A. 2014;164A(7):1795-1801. doi: 10.1002/AJMG.A.36524

3. Andrews S. A quality control tool for high throughput sequence data. 2020. Accessed: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

4. Ballout R.A., El-Hattab A.W., Schaaf C.P., Cheung S.W. Xq28 duplication syndrome, int22h1/int22h2 mediated. GeneReviews®. 2021. https://www.ncbi.nlm.nih.gov/books/NBK349624/

5. Bauters M., Weuts A., Vandewalle J., Nevelsteen J., Marynen P., Van Esch H., Froyen G. Detection and validation of copy number variation in X-linked mental retardation. Cytogenet Genome Res. 2008; 123(1­4):44­53. doi: 10.1159/000184691

6. Board P.G., Coggan M., Watson S., Gage P.W., Dulhunty A.F. CLIC- 2 modulates cardiac ryanodine receptor Ca<sup>2+</sup> release channels. Int J Biochem Cell Biol. 2004;36(8):1599-1612. doi: 10.1016/j.biocel.2004.01.026

7. Brandt T., Sack L.M., Arjona D., Tan D., Mei H., Cui H., Gao H., … Vincent L.M., Reavey C., Lai A., Richard G., Meck J.M. Adapting ACMG/AMP sequence variant classification guidelines for single-gene copy number variants. Genet Med. 2020;22(2):336­344. doi: 10.1038/S41436-019-0655-2

8. El-Hattab A.W., Fang P., Jin W., Hughes J.R., Gibson J.B., Patel G.S., Grange D.K., Manwaring L.P., Patel A., Stankiewicz P., Cheung S.W. Int22h-1/int22h-2­mediated Xq28 rearrangements: intellectual disbility associated with duplications and in utero male lethality with deletions. J Med Genet. 2011;48(12):840­850. doi: 10.1136/jmedgenet­2011­100125

9. El-Hattab A.W., Schaaf C.P., Fang P., Roeder E., Kimonis V.E., Church J.A., Patel A., Cheung S.W. Clinical characterization of int22h1/int22h2­mediated Xq28 duplication/deletion : new cases and literature review. BMC Med Genet. 2015;16:12. doi: 10.1186/S12881-015-0157-2

10. Fedotov D.A., Kashevarova A.A., Lebedev I.N. CNVs in patients with neurodevelopmental disorders: meta­analysis. Russ J Genet 2024; 60(5):572­587. doi: 10.1134/S1022795424700066

11. Giannandrea M., Bianchi V., Mignogna M.L., Sirri A., Carrabino S., D’Elia E., Vecellio M., … Gecz J., Van Esch H., Raynaud M., Chelly J., D’Adamo P. Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. Am J Hum Genet. 2010; 86(2):185-195. doi: 10.1016/j.ajhg.2010.01.011

12. Iyer J., Girirajan S. Gene discovery and functional assessment of rare copy­number variants in neurodevelopmental disorders. Brief Funct Genomics. 2015;14(5):315­328. doi: 10.1093/bfgp/elv018

13. Kearney H.M., Thorland E.C., Brown K.K., Quintero-Rivera F., South S.T. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med. 2011;13(7):680­685. doi: 10.1097/GIM.0b013e3182217a3a

14. Lannoy N., Grisart B., Eeckhoudt S., Verellen-Dumoulin C., Lambert C., Vikkula M., Hermans C. Intron 22 homologous regions are implicated in exons 1–22 duplications of the F8 gene. Eur J Hum Genet. 2013;21(9):970-976. doi: 10.1038/ejhg.2012.275

15. Lavrov A.V., Bannikov A.V., Chausheva A.I., Dadali E.L. Genetics of mental retardation. Rossiyskiy Vestnik Perinatologii i Pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2016;61(6):13­20. doi: 10.21508/1027­4065­2016­61­6­13­20 (in Russian)

16. Lebedev I.N., Shilova N.V., Iourov I.Yu., Malysheva O.V., Tveleneva A.A., Minzhenkova M.E., Markova Zh.G., Tolmacheva E.N., Kashevarova A.A. Guidelines of the Russian Society of Medical Geneticists for chromosomal microarray analysis. Meditsinskaya Genetika = Medical Genetics. 2023;22(10):3­47. doi: 10.25557/2073-7998.2023.10.3-47 (in Russian)

17. Lesage S., Bras J., Cormier-Dequaire F., Condroyer C., Nicolas A., Darwent L., Guerreiro R., … Hardy J., Tison F., Singleton A., Brice A.; French Parkinson’s Disease Genetics Study Group (PDG) and the International Parkinson’s Disease Genomics Consortium (IPDGC). Loss­of­function mutations in RAB39B are associated with typical early-onset Parkinson disease. Neurol Genet. 2015;1(1):e9. doi: 10.1212/NXG.0000000000000009

18. McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., De­ Pristo M.A. The genome analysis toolkit: a MapReduce framework for analyzing next­generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303. doi: 10.1101/GR.107524.110

19. Meng X., Wang G., Viero C., Wang Q., Mi W., Su X.D., Wagenknecht T., Williams A.J., Liu Z., Yin C.C. CLIC2-RyR1 interaction and structural characterization by cryo­electron microscopy. J Mol Biol. 2009;387(2):320-334. doi: 10.1016/J.JMB.2009.01.059

20. Mental retardation in children: Rubricator for clinical recommendations. Russian Society of Psychiatrists. 2024. Available at https://cr.minzdrav.gov.ru/view­cr/676_2

21. Mignogna M.L., Giannandrea M., Gurgone A., Fanelli F., Raimondi F., Mapelli L., Bassani S., … Passafaro M., Gatti S., Esteban J.A., Huganir R., D’Adamo P. The intellectual disability protein RAB39B selectively regulates GluA2 trafficking to determine synaptic AMPAR composition. Nat Commun. 2015;6:6504. doi: 10.1038/ncomms7504

22. OMIM: An Online Catalog of Human Genes and Genetic Disorders. http://www.omim.org/

23. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., Voelkerding K., Rehm H.L. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405­424. doi: 10.1038/GIM.2015.30

24. Riggs E.R., Andersen E.F., Cherry A.M., Kantarci S., Kearney H., Patel A., Raca G., Ritter D.I., South S.T., Thorland E.C., Pineda-Alvarez D., Aradhya S., Martin C.L. Technical standards for the interpretation and reporting of constitutional copy­number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020;22(2):245­257. doi: 10.1038/S41436-019-0686-8

25. Russo S., Cogliati F., Cavalleri F., Cassitto M.G., Giglioli R., Toniolo D., Casari G., Larizza L. Mapping to distal Xq28 of nonspecific X-linked mental retardation MRX72: linkage analysis and clinical findings in a three-generation Sardinian family. Am J Med Genet. 2000;94(5): 376­382. doi: 10.1002/1096-8628(20001023)94:5<376::aid-ajmg6>3.0.co;2­a

26. Schalock R.L., Luckasson R., Tassé M.J. An overview of intellectual disability: definition, diagnosis, classification, and systems of supports (12th ed.). Am J Intellect Dev Disabil. 2021;126(6):439-442. doi: 10.1352/1944-7558-126.6.439

27. Takano K., Liu D., Tarpey P., Gallant E., Lam A., Witham S., Alexov E., Chaubey A., Stevenson R.E., Schwartz C.E., Board P.G., Dulhunty A.F. An X-linked channelopathy with cardiomegaly due to a CLIC2 mutation enhancing ryanodine receptor channel activity. Hum Mol Genet. 2012;21(20):4497-4507. doi: 10.1093/hmg/ddS292

28. Tolmacheva E.N., Fonova E.A., Lebedev I.N. X-linked CNV in pathogenetics of intellectual disability. Russ J Genet. 2022;58(10):1193-1207. doi: 10.1134/S102279542210009X

29. Tolmacheva E.N., Kashevarova A.A., Fonova E.A., Salyukova O.A., Seitova G.N., Nazarenko L.P., Agafonova A.A., … Vovk S.L., Fedotov D.A., Vasilyeva O.Y., Skryabin N.A., Lebedev I.N. Prevalence of CNVs on the X chromosome in patients with neurodevelopmental disorders. Mol Cytogenet. 2025;18(1):3. doi: 10.1186/s13039-025-00703­w

30. Vandewalle J., Van Esch H., Govaerts K., Verbeeck J., Zweier C., Madrigal I., Mila M., … Spaich C., Rauch A., Fryns J.P., Marynen P., Froyen G. Dosage­dependent severity of the phenotype in patients with mental retardation due to a recurrent copy­number gain at Xq28 mediated by an unusual recombination. Am J Hum Genet. 2009;85(6):809-822. doi: 10.1016/j.ajhg.2009.10.019

31. Vanmarsenille L., Giannandrea M., Fieremans N., Verbeeck J., Belet S., Raynaud M., Vogels A., Männik K., Õunap K., Jacqueline V., Briault S., Van Esch H., D’Adamo P., Froyen G. Increased dosage of RAB39B affects neuronal development and could explain the cognitive impairment in male patients with distal Xq28 copy number gains. Hum Mutat. 2014;35(3):377­383. doi: 10.1002/humu.22497

32. Voinova V.Y., Vorsanova S.G., Yurov Y.B., Kolotiy A.D., Davidova Y.I., Demidova I.A., Novikov P.V., Iourov I.Y. Clinical and genetic characteristics of the X chromosome distal long arm micro­duplications encompassing the MECP2 gene. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2015;115(10):10­16. doi: 10.17116/jnevro201511510110­16 (in Russian)

33. Wang K., Li M., Hakonarson H. ANNOVAR: functional annotation of genetic variants from high­throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi: 10.1093/nar/gkq603

34. Wang Z., Niu M., Zheng N., Meng J., Jiang Y., Yang D., Yao P., Yao T., Luo H., Xu H., Ge Y., Zhang Y.W., Zhang X. Increased level of RAB39B leads to neuronal dysfunction and behavioural changes in mice. J Cell Mol Med. 2023;27(9):1214-1226. doi: 10.1111/jcmm.17704

35. Wilson G.R., Sim J.C.H., McLean C., Giannandrea M., Galea C.A., Riseley J.R., Stephenson S.E.M., … Kalscheuer V.M., D’Adamo P., Bahlo M., Amor D.J., Lockhart P.J. Mutations in RAB39B cause X­ linked intellectual disability and early-onset Parkinson disease with α-synuclein pathology. Am J Hum Genet. 2014;95(6):729-735. doi: 10.1016/j.ajhg.2014.10.015

36. Witham S., Takano K., Schwartz C., Alexov E. A missense mutation in CLIC2 associated with intellectual disability is predicted by in silico modeling to affect protein stability and dynamics. Proteins. 2011;79(8):2444-2454. doi: 10.1002/prot.23065


Review

Views: 56


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)