Rare missense substitutions in the mitochondrial DNA genes in patients with ventricular tachycardia
https://doi.org/10.18699/vjgb-25-74
Abstract
Human mitochondrial DNA (mtDNA) exhibits high population-level polymorphism. While certain pathogenic mtDNA variants are known to cause hereditary mitochondrial syndromes, often presenting with cardiac arrhythmias, life-threatening ventricular tachycardia (VT) itself is a major risk factor for sudden death in cardiovascular diseases.
The aim of the work was to study rare (“private”) missense substitutions in the mtDNA of patients with documented episodes of ventricular tachycardia in comparison with patients with ischemic heart disease without life-threatening heart arrhythmias and individuals without clinical manifestations of cardiovascular diseases.
The sequencing of mtDNA was performed using high-throughput sequencing methods. Specialized algorithms predicting the effect of gene variants were used to assess the effect of missense substitutions. Comparative analysis of the spectrum of the identified amino acid substitutions in the studied groups showed that about 40 % of the individuals in all three groups were carriers of “private” missense variants in mtDNA. However, among such substitutions, the variants classified by the APOGEE2 predictor as “variants of uncertain significance” (VUS) were more common in the group of patients with heart arrhythmias than in the control group, where “private” missense substitutions of the VUS category were not detected (p = 0.0063 for Fisher’s exact test). In addition, the groups differed in their phred-ranked Combined Annotation Dependent Depletion (CADD) scores, which were lower for individuals in the control group. The results indicate that rare mtDNA variants may contribute to predisposition to cardiovascular disease – in particular, to the risk of developing ventricular tachycardia by some patients.
Keywords
About the Authors
M. V. GolubenkoRussian Federation
Tomsk
N. P. Babushkina
Russian Federation
Tomsk
V. A. Korepanov
Russian Federation
Tomsk
N. R. Valiakhmetov
Russian Federation
Tomsk
T. A. Atabekov
Russian Federation
Tomsk
K. N. Vitt
Russian Federation
Tomsk
A. A. Zarubin
Russian Federation
Tomsk
O. A. Makeeva
Russian Federation
Tomsk
S. A. Afanasiev
Russian Federation
Tomsk
R. E. Batalov
Russian Federation
Tomsk
A. A. Garganeeva
Russian Federation
Tomsk
M. S. Nazarenko
Russian Federation
Tomsk
V. P. Puzyrev
Russian Federation
Tomsk
References
1. Andrews R.M., Kubacka I., Chinnery P.F., Lightowlers R.N., Turnbull D.M., Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet. 1999; 23(2):147. doi: 10.1038/13779
2. Bianco S.D., Parca L., Petrizzelli F., Biagini T., Giovannetti A., Liorni N., Napoli A., … Zhang S., Vescovi A.L., Wallace D.C., Caputo V., Mazza T. APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants. Nat Commun. 2023;14(1):5058. doi: 10.1038/s41467-023-40797-7
3. Bockeria L.A., Neminushchiy N.M., Mikhaylichenko S.I., Novichkov S.A., Achkasov E.E. Implantable cardioverter defibrillators in the prevention of sudden cardiac death. Terapevticheskiy Arkhiv = Therapeutic Archive. 2017;89(12):103-109. doi: 10.17116/terarkh20178912103-109 (in Russian)
4. Castellana S., Rónai J., Mazza T. MitImpact: an exhaustive collection of pre-computed pathogenicity predictions of human mitochondrial non-synonymous variants. Hum Mutat. 2015;36(2):E2413-E2422. doi: 10.1002/humu.22720
5. Chao T.F., Liu C.J., Tuan T.C., Chen S.J., Chen T.J., Lip G.Y.H., Chen S.A. Risk and prediction of sudden cardiac death and ventricular arrhythmias for patients with atrial fibrillation – a nationwide cohort study. Sci Rep. 2017;7:46445. doi: 10.1038/srep46445
6. Elson J.L., Turnbull D.M., Howell N. Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am J Hum Genet. 2004;74(2):229-238. doi: 10.1086/381505
7. Eltsov N., Volodko N. MtPhyl: Software tool for human mtDNA analysis and phylogeny reconstruction. Version 5.003. [Computer software]. 2011. https://sites.google.com/site/mtphyl/home/
8. Gambardella J., Sorriento D., Ciccarelli M., Del Giudice C., Fiordelisi A., Napolitano L., Trimarco B., Iaccarino G., Santulli G. Functional role of mitochondria in arrhythmogenesis. Adv Exp Med Biol. 2017;982:191-202. doi: 10.1007/978-3-319-55330-6_10
9. Gao F., Keinan A. High burden of private mutations due to explosive human population growth and purifying selection. BMC Genomics. 2014;15(Suppl. 4):S3. doi: 10.1186/1471-2164-15-S4-S3
10. Golubenko M.V., Salakhov R.R., Makeeva O.A., Goncharova I.A., Kashtalap V.V., Barbarash O.L., Puzyrev V.P. Association of mitochondrial DNA polymorphism with myocardial infarction and prognostic signs for atherosclerosis. Mol Biol. 2015;49(6):867-874. doi: 10.1134/S0026893315050088
11. Golubenko M.V., Shumakova T.V., Makeeva O.A., Tarasenko N.V., Salakhov R.R., Shipulin V.M., Nazarenko M.S. Mitochondrial DNA polymorphism and myocardial ischemia: association of haplogroup H with heart failure. Sibirskiy Zhurnal Klinicheskoy i Eksperimental’noy Meditsiny = Siberian Journal of Clinical and Experimental Medicine. 2021;36(4):70-77. doi: 10.29001/2073-8552-2021-36-4-70-77 (in Russian)
12. Govindaraj P., Khan N.A., Rani B., Rani D.S., Selvaraj P., Jyothi V., Bahl A., Narasimhan C., Rakshak D., Premkumar K., Khullar M., Thangaraj K. Mitochondrial DNA variations associated with hypertrophic cardiomyopathy. Mitochondrion. 2014;16:65-72. doi: 10.1016/j.mito.2013.10.006
13. Govindaraj P., Rani B., Sundaravadivel P., Vanniarajan A., Indumathi K.P., Khan N.A., Dhandapany P.S., … Rakshak D., Rathinavel A., Premkumar K., Khullar M., Thangaraj K. Mitochondrial genome variations in idiopathic dilated cardiomyopathy. Mitochondrion. 2019;48:51-59. doi: 10.1016/j.mito.2019.03.003
14. Hagen C.M., Aidt F.H., Havndrup O., Hedley P.L., Jensen M.K., Kanters J.K., Pham T.T., Bundgaard H., Christiansen M. Private mitochondrial DNA variants in danish patients with hypertrophic cardiomyopathy. PLoS One. 2015;10(4):e0124540. doi: 10.1371/journal.pone.0124540
15. Hudson G., Gomez-Duran A., Wilson I.J., Chinnery P.F. Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases. PLoS Genet. 2014;10(5):e1004369. doi: 10.1371/journal.pgen.1004369
16. JASP Team. Version 0.19.3. [Computer software]. 2024. Available: https://jasp-stats.org/
17. Ji Y., Zhang J., Yu J., Wang Y., Lu Y., Liang M., Li Q., … Zhu T., Mo J.Q., Huang T., Jiang P., Guan M.X. Contribution of mitochondrial ND1 3394T>C mutation to the phenotypic manifestation of Leber’s hereditary optic neuropathy. Hum Mol Genet. 2019;28(9):1515-1529. doi: 10.1093/hmg/ddy450
18. Kibel A., Lukinac A.M., Dambic V., Juric I., Selthofer-Relatic K. Oxidative stress in ischemic heart disease. Oxid Med Cell Longev. 2020; 2020:6627144. doi: 10.1155/2020/6627144
19. Koplan B.A., Stevenson W.G. Ventricular tachycardia and sudden cardiac death. Mayo Clin Proc. 2009;84(3):289-297. doi: 10.4065/84.3.289
20. Kytövuori L., Junttila J., Huikuri H., Keinänen-Kiukaanniemi S., Majamaa K., Martikainen M.H. Mitochondrial DNA variation in sudden cardiac death: a population-based study. Int J Legal Med. 2020;134(1):39-44. doi: 10.1007/s00414-019-02091-4
21. McCormick E.M., Lott M.T., Dulik M.C., Shen L., Attimonelli M., Vitale O., Karaa A., … Zhang S., Procaccio V., Wallace D.C., Gai X., Falk M.J. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum Mutat. 2020;41(12):2028-2057. doi: 10.1002/humu.24107
22. Montaigne D., Pentiah A.D. Mitochondrial cardiomyopathy and related arrhythmias. Card Electrophysiol Clin. 2015;7(2):293-301. doi: 10.1016/j.ccep.2015.03.008
23. Müller-Nedebock A.C., Pfaff A.L., Pienaar I.S., Kõks S., van der Westhuizen F.H., Elson J.L., Bardien S. Mitochondrial DNA variation in Parkinson’s disease: Analysis of “out-of-place” population variants as a risk factor. Front Aging Neurosci. 2022;14:921412. doi: 10.3389/fnagi.2022.921412
24. Ng Y.S., Turnbull D.M. Mitochondrial disease: genetics and management. J Neurol. 2016;263(1):179-191. doi: 10.1007/s00415-015-7884-3
25. Palacín M., Alvarez V., Martín M., Díaz M., Corao A.I., Alonso B., Díaz-Molina B., … Cannata-Andía J., Batalla A., Ruiz-Ortega M., Martínez-Camblor P., Coto E. Mitochondrial DNA and TFAM gene variation in early-onset myocardial infarction: evidence for an association to haplogroup H. Mitochondrion. 2011;11(1):176-181. doi: 10.1016/j.mito.2010.09.004
26. Piotrowska-Nowak A., Elson J.L., Sobczyk-Kopciol A., Piwonska A., Puch-Walczak A., Drygas W., Ploski R., Bartnik E., Tonska K. New mtDNA association model, MutPred variant load, suggests individuals with multiple mildly deleterious mtDNA variants are more likely to suffer from atherosclerosis. Front Genet. 2019;9:702. doi: 10.3389/fgene.2018.00702
27. Rentzsch P., Schubach M., Shendure J., Kircher M. CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021;13(1):31. doi: 10.1186/s13073-021-00835-9
28. Roselló-Díez E., Hove-Madsen L., Pérez-Grijalba V., Muñoz-Guijosa C., Artigas V., Maria Padró J., Domínguez-Garrido E. Mitochondrial genetic effect on atrial fibrillation: a case-control study. Mitochondrion. 2021;56:15-24. doi: 10.1016/j.mito.2020.11.007
29. Severino P., D’Amato A., Pucci M., Infusino F., Birtolo L.I., Mariani M.V., Lavalle C., Maestrini V., Mancone M., Fedele F. Ischemic heart disease and heart failure: role of coronary ion channels. Int J Mol Sci. 2020;21(9):3167. doi: 10.3390/ijms21093167
30. Torroni A., Petrozzi M., D’Urbano L., Sellitto D., Zeviani M., Carrara F., Carducci C., Leuzzi V., Carelli V., Barboni P., De Negri A., Scozzari R. Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am J Hum Genet. 1997;60(5):1107-1121
31. van Opbergen C.J.M., den Braven L., Delmar M., van Veen T.A.B. Mitochondrial dysfunction as substrate for arrhythmogenic cardiomyopathy: a search for new disease mechanisms. Front Physiol. 2019;10:1496. doi: 10.3389/fphys.2019.01496
32. van Oven M., Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat. 2008; 30(2):E386-E394. doi: 10.1002/humu.20921
33. Weissensteiner H., Forer L., Kronenberg F., Schönherr S. mtDNA-Server 2: advancing mitochondrial DNA analysis through highly parallelized data processing and interactive analytics. Nucleic Acids Res. 2024;52(W1):W102-W107. doi: 10.1093/nar/gkae296
34. Yang L., Wang S., Wu J., Ma L.L., Li Y., Tang H. Editorial: mitochondrial metabolism in ischemic heart disease. Front Cardiovasc Med. 2022;9:961580. doi: 10.3389/fcvm.2022.961580






