Endogenous oxytocin and intermale interactions after oxytocin administrations in Norway rats selected for behavior
https://doi.org/10.18699/vjgb-25-92
Abstract
The neuropeptide oxytocin (OT) secreted by specialized neurons in the hypothalamus affects social behavior and aggression in various animal species in a dose-dependent manner. Our earlier studies showed that OT administration by nasal application to adult and adolescent Norway rat males selected for enhanced aggressive response to humans reduced aggression upon the opponent in the resident-intruder test. By contrast, OT administration to rats selected for tame behavior exerted no effect on behavior or even enhanced aggression. It was still unknown how selection for behavior affected the endogenous oxytocinergic system in rats. Here we study the populations of OT-containing cells in the paraventricular and supraoptic nuclei of the hypothalamus in intact tame and aggressive rats with regard to lateralization, as the hypothalamus is known to be functionally asymmetrical. We have also assessed blood OT changes after nasal OT application to rats selected for behavior. As it is known that the effect of OT on rat aggressiveness may depend on the basal level of the latter, we have analyzed the effect of OT administration on behavior in tame and aggressive rats interacting on neutral ground, where the aggressiveness of males manifests itself less than in the defense of territory in the resident-intruder test. The asymmetry in the numbers of OT-containing cells in the left and right halves of the paraventricular and supraoptic nuclei has been observed only in tame rats. The number of such cells in the right half of tame rats is greater than in aggressive. In contrast, the blood OT level in tame rats is significantly lower than in aggressive ones both in the intact animals and after OT administration. Oxytocin administration to aggressive rats shortens aggressive interactions and lateral threats and reduces the number of the latter as compared to animals of the same behavior pattern having received saline. This observation may point to an anti-aggressive effect of OT. In tame rats, though, OT administration increases the number of hind leg kicks and kicking duration. It appears that the differences in the endogenous OTergic system of hypothalamus found in this study are associated with both the behavior formed during selection and different responses to exogenous OT in tame and aggressive animals.
About the Authors
S. G. ShikhevichRussian Federation
Novosibirsk
R. V. Kozhemyakina
Russian Federation
Novosibirsk
R. G. Gulevich
Russian Federation
Novosibirsk
Yu. E. Herbeck
Russian Federation
Novosibirsk
Haifa
References
1. Aydogan G., Jobst A., Loy F., Dehning S., Zill P., Müller N., Kocher M. The effect of oxytocin on group formation and strategic thinking in men. Horm Behav. 2018;100:100-106. doi 10.1016/j.yhbeh.2018. 02.003
2. Bartz J.A., Lydon J.E., Kolevzon A., Zaki J., Hollander E., Ludwig N., Bolger N. Differential effects of oxytocin on agency and communion for anxiously and avoidantly attached individuals. Psychol Sci. 2015;26(8):1177-1186. doi 10.1177/0956797615580279
3. Calcagnoli F., de Boer S.F., Althaus M., de Boer J.A., Koolhaas J.M. Antiaggressive activity of central oxytocin in male rats. Psychopharmacology. 2013;229(4):639-651. doi 10.1007/s00213-013-3124-7
4. Calcagnoli F., de Boer S.F., Beiderbec D.I., Althausc M., Koolhaas J.M., Neumann I.D. Local oxytocin expression and oxytocin receptor binding in the male rat brain is associated with aggressiveness. Behav Brain Res. 2014;261:315-322. doi 10.1016/j.bbr.2013.12.050
5. Calcagnoli F., Kreutzmann J.C., de Boer S.F., Althaus M., Koolhaas J.M. Acute and repeated intranasal oxytocinadministration exerts antiaggressive and pro-affiliative effects in male rats. Psychoneuroendocrinology. 2015;51:112-121. doi 10.1016/j.psyneuen.2014.09.019
6. Castel M., Gainer H., Dellmann H.D. Neuronal secretory systems. Int Rev Cytol. 1984;88:303-459. doi 10.1016/s0074-7696(08)62760-6
7. Crespi B.J. Oxytocin, testosterone, and human social cognition. Biol Rev Camb Philos Soc. 2016;91(2):390-408. doi 10.1111/brv.12175
8. de Jong T.R., Neumann I.D. Oxytocin and aggression. Curr Top Behav Neurosci. 2018;35:175-192. doi 10.1007/7854_2017_13
9. Eliava M., Melchior M., Knobloch-Bollmann H.S., Wahis J., da Silva Gouveia M., Tang Y., Ciobanu A.C., … Poisbeau P., Seeburg P.H., Stoop R., Charlet A., Grinevich V. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron. 2016;89(6):1291-1304. doi 10.1016/j.neuron.2016.01.041
10. Engelmann M., Landgraf R., Wotjak C.T. The hypothalamic-neurohypophysial system regulates thehypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol. 2004;25:132-149. doi 10.1016/j.yfrne.2004.09.001
11. Grinevich V., Neumann I. Brain oxytocin: how pazzle stones from animal studies translate into psychiatry. Mol Psychiatry. 2021;26(1): 265-279. doi 10.1038/s41380-020-0802-9
12. Grinevich V., Desarménien M., Chini B., Tauber M., Muscatelli F. Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders. Front Neuroanat. 2015;8:164. doi 10.3389/fnana.2014.00164
13. Gulevich R., Kozhemyakina R., Shikhevich S., Konoshenko M., Herbeck Yu. Aggressive behavior and stress response after oxytocin administration in male Norway rats selected for different attitudes to humans. Physiol Behav. 2019;199:201-218. doi 10.1016/j.physbeh. 2018.11.030
14. Herbeck Y.E., Gulevich R.G. Neuropeptides as facilitators of domestication. Cell Tissue Res. 2019;375(1):295-307. doi 10.1007/s00441-018-2939-2
15. Herbeck Y.E., Amelkina O.A., Konoshenko M.Yu., Shikhevich S.G., Gulevich R.G., Kozhemyakina R.V., Plyusnina I.Z., Oskina I.N. Effects of neonatal handling on behavior and stress response in rats selected for their reaction towards humans. Russ J Genet Appl Res. 2017;7(1):71-81. doi 10.1134/S2079059717010051
16. Hernádi A., Kis A., Kanizsár O., Tóth K., Miklósi B., Topál J. Intranasally administered oxytocin affects how dogs (Canis familiaris) react to the threatening approach of their owner and an unfamiliar experimenter. Behav Processes. 2015;119:1-5. doi 10.1016/j.beproc. 2015.07.001
17. Jurek B., Neumann I. The oxytocin receptor: from intracellular signaling to behavior. Physiol Rev. 2018;98(3):1805-1908. doi 10.1152/Physrev.00031.2017
18. Jurek B., Slattery D.A., Hiraoka Y., Liu Y., Nishimori K., Aguilera G., Neumann I.D., van den Burg E.H. Oxytocin regulates stress-induced Crf gene transcription through CREB-regulated transcription coactivator 3. J Neurosci. 2015;5(35):12248-12260. doi 10.1523/JNEUROSCI.1345-14.2015
19. Kiss D.S., Toth I., Jocsak G., Barany Z., Bartha T., Frenyo L.V., Horvath T.L., Zsarnovszky A. Functional aspects of hypothalamic asymmetry. Brain Sci. 2020;10(6):389. doi 10.3390/brainsci10060389
20. Knobloch S., Charlet A., Hoffmann L.C., Eliava M., Khrulev S., Cetin A.H., Osten P., Schwarz M.K., Seeburg P.H., Stoop R., Grinevich V. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron. 2012;73(3):553-566. doi 10.1016/j.neuron.2011.11.030
21. Kozhemyakina R.V., Shikhevich S.G., Konoshenko M.Yu., Gulevich R.G. Adolescent oxytocin treatment affects resident behavior in aggressive but not tame adult rats. Physiol Behav. 2020;224:113046. doi 10.1016/j.physbeh.2020.113046
22. Marsh N., Marsh A.A., Lee M.R., Hurlemann R. Oxytocin and the neurobiology of prosocial behavior. Neuroscientist. 2021;27(6): 604-619. doi 10.1177/1073858420960111
23. Neumann I. Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol. 2008; 20(6):858-865. doi 10.1111/j.1365-2826.2008.01726.x
24. Neumann I.D., Slattery D.A. Oxytocin in general anxiety and social fear: a translational approach. Biol Psychiatry. 2016;79(3):213-221. doi 10.1016/j.biopsych.2015.06.004
25. Neumann I., Wigger A., Torner L., Holsboer F., Landgraf R. Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary adrenal axis in male and female rats: partial action within the paraventricular nucleus. J Neuroendocrinol. 2000;12(3): 235-243. doi 10.1046/j.1365-2826.2000.00442.x
26. Neumann I., Maloumby R., Beiderbeck D.I., Lukas M., Landgraf R. Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. Psychoneuroendocrinology. 2013;38(10): 1985-1993. doi 10.1016/j.psyneuen.2013.03.003
27. Pavlova I.V. Functional brain asymmetry in motivational and emotional conditions: Doctor Sci (Biol.) Dissertation. Moscow, 2001 (in Russian) Plyusnina I., Oskina I. Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans. Physiol Behav. 1997;61(3):381-385. doi 10.1016/s0031- 9384(96)00445-3
28. Plyusnina I., Solov’eva M. Intraspecific intermale aggression in tame and aggressive Norway rats. Zhurnal Vysshei Nervnoi Deyatelnosti imeni I.P. Pavlova. 2010;60(2):175-183 (in Russian)
29. Plyusnina I.Z., Solov’eva M.Y., Oskina I.N. Effect of domestication on aggression in gray Norway rats. Behav Genet. 2011;41(4):583-592. doi 10.1007/s10519-010-9429-y
30. Rault J.-L., Carter C.S., Garner J.P., Marchant J.N., Richert B.T., Lay D.C. Jr. Repeated intranasal oxytocin administration in early life dysregulates the HPA axis and alters social behavior. Physiol Behav. 2013;112-113:40-48. doi 10.1016/j.physbeh.2013.02.007
31. Shamay-Tsoory S.G., Abu-Akel A. The social salience hypothesis of oxytocin. Biol Psychiatry. 2016;79(3):194-202. doi 10.1016/j.biopsych.2015.07.020
32. Simonov P.V. The Motivated Brain. Moscow: Nauka Publ., 1987 (in Russian)
33. Simonov P.V. The nerve centers of the emotions. Zhurnal Vysshei Nervnoi Deyatelnosti imeni I.P. Pavlova. 1993;43(3):514-529 (in Russian)
34. Smith A.S., Wang Z. Hypothalamic oxytocin mediates social buffering of the stress response. Biol Psychiatry. 2014;76(4):281-288. doi 10.1016/j.biopsych.2013.09.017
35. Soriano J.R., Daniels N., Prinsen J., Alaerts K. Intranasal oxytocin enhances approach-related EEG frontal alpha asymmetry during engagement of direct eye contact. Brain Commun. 2020;2(2):fcaa093. doi 10.1093/braincomms/fcaa093
36. Sudakov K.V. The neurophysical grounds of dominating motivation. Vestnik Rossiiskoy Akademii Meditsinskikh Nauk = Annals of the Russian Academy of Medical Sciences. 1993;7:42-48 (in Russian)
37. Takayanagi Y., Onaka T. Roles of oxytocin in stress responses, allostasis and resilience. Int J Mol Sci. 2021;23(1):150. doi 10.3390/ijms23010150
38. Tang Y., Benusiglio D., Lefevre A., Hilfiger L., Althammer F., Bludau A., Hagiwara D., … Stern J.E., Leng G., Neumann I.D., Charlet A., Grinevich V. Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nat Neurosci. 2020;23(9):1125-1137. doi 10.1038/s41593-020-0674-y
39. Yayou K., Ito S., Yamamoto N. Relationships between postnatal plasma oxytocin concentrations and social behaviors in cattle. Anim Sci J. 2015;86(8):806-813. doi 10.1111/asj.12363
40. Yoon S., Kim Yu. The role of the oxytocin system in anxiety disorders. Adv Exp Med Biol. 2020;1191:103-120. doi 10.1007/978-981-32-9705-0_7