Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Agrobacterium-derived DNA sequences in phylogenetic studies of plants

https://doi.org/10.18699/vjgb-25-93

Abstract

One of the main methods for obtaining transgenic plants is Agrobacterium-mediated transformation. This process relies on the ability of certain soil bacteria, specifically from the genera Agrobacterium and Rhizobium, to transfer and integrate a fragment of their plasmid into the chromosome of the recipient plant. This transferred DNA is referred to as T-DNA. Laboratory studies have demonstrated that whole plants can be regenerated from transgenic cells. It soon became evident that similar processes occur in nature, leading to the emergence of naturally transgenic plants, or natural GMOs. Thus, naturally transgenic plants possess homologues of the T-DNA genes from agrobacteria in their genomes (cellular T-DNA, or cT-DNA). These sequences are inherited through multiple sexual generations and retain their functionality. Furthermore, the potential for using newly acquired plant sequences in phylogenetic studies has been established, as cT-DNAs are clearly defined, highly specific, and recognizable DNA fragments that differ from typical plant DNA sequences. They are not found in untransformed ancestors, and their integration at specific chromosomal sites marks a monophyletic group of species. This review highlights the diversity of cellular T-DNAs and their potential use as phylogenetic markers. It includes a description of the main methodological approaches to such studies and discusses specific examples that clarify controversial points in the phylogeny of the genera Nicotiana, Camellia, Vaccinium, and Arachis. An important aspect of phylogenetic analysis based on cT-DNA is the assembly of individual alleles, which enables the tracking of interspecific hybridization events. This approach demonstrated the incomplete process of speciation within the Thea section of the genus Camellia and confirmed the role of interspecific hybridization in the breeding of North American blueberries. The review also addresses the dating of transformation events based on cT-DNA, which are organized in the form of imperfect repeats, as well as the application of phylogenetic studies to investigate the biodiversity of agrobacterial T-DNA genes.

About the Authors

T. V. Matveeva
Saint-Petersburg State University
Russian Federation

 St. Petersburg 



P. M. Zhurbenko
Komarov Botanical Institute of the Russian Academy of Sciences
Russian Federation

 St. Petersburg 



G. V. Khafizova
University of Houston
United States

 Houston 



A. D. Shaposhnikov
Saint-Petersburg State University
Russian Federation

 St. Petersburg 



R. R. Zhidkin
Saint-Petersburg State University
Russian Federation

 St. Petersburg 



A. V. Rodionov
Saint-Petersburg State University; Komarov Botanical Institute of the Russian Academy of Sciences
Russian Federation

 St. Petersburg 



References

1. Anderson A., Moore L. Host specificity in the genus Agrobacterium. Phytopathology. 1979;69(4):320-323. doi 10.1094/Phyto-69-320

2. Bahramnejad B., Naji M., Bose R., Jha S. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnol Adv. 2019;37(7):107405. doi 10.1016/j.biotechadv.2019.06.004

3. Becker A.L., Crowl A.A., Luteyn J.L., Chanderbali A.S., Judd W.S., Manos P.S., Soltis D.E., Smith S.A., Goncalves D.J.P., Dick C.W., Weaver W.N., Soltis P.S., Cellinese N., Fritsch P.W. A global blueberry phylogeny: evolution, diversification, and biogeography of Vaccinieae (Ericaceae). Mol Phylogenet Evol. 2024;201:108202. doi 10.1016/j.ympev.2024.108202

4. Bertioli D.J., Seijo G., Freitas F.O., Valls J.F.M., Leal-Bertioli S.C.M., Moretzsohn M.C. An overview of peanut and its wild relatives. Plant Genet Resour. 2011;9(1):134-149. doi 10.1017/S1479262110000444

5. Bogomaz O.D., Bemova V.D., Mirgorodskii N.A., Matveeva T.V. Evolutionary fate of the opine synthesis genes in the Arachis L. genomes. Biology (Basel). 2024;13(8):601. doi 10.3390/biology13080601

6. Brandle J., Bai D. Biotechnology: uses and applications in tobacco improvement. In: Davis D.L., Nielsen M.T. (Eds) Tobacco: Production, Chemistry and Technology. Wiley, 1999;49-65

7. Browning S.R., Browning B.L. Haplotype phasing: existing methods and new developments. Nat Rev Genet. 2011;12(10):703-714. doi 10.1038/nrg3054

8. Camp W.H. The North American blueberries with notes on other groups of Vacciniaceae. Brittonia. 1945;5(3):203-275. doi 10.2307/2804880

9. Camp W.H., Gilly C.L. The structure and origin of species. Brittonia. 1943;4(3):323-385. doi 10.2307/2804896

10. Carr I.M., Robinson J.I., Dimitriou R., Markham A.F., Morgan A.W., Bonthron D.T. Inferring relative proportions of DNA variants from sequencing electropherograms. Bioinformatics. 2009;25(24):3244- 3250. doi 10.1093/bioinformatics/btp583

11. Chen K., Dorlhac de Borne F., Szegedi E., Otten L. Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J. 2014;80(4):669- 682. doi 10.1111/tpj.12661

12. Chen K., Dorlhac de Borne F., Sierro N., Ivanov N.V., Alouia M., Koechler S., Otten L. Organization of the TC and TE cellular T-DNA regions in Nicotiana otophora and functional analysis of three diverged TE-6b genes. Plant J. 2018;94(2):274-287. doi 10.1111/tpj.13853

13. Chen K., Zhurbenko P., Danilov L., Matveeva T., Otten L. Conservation of an Agrobacterium cT-DNA insert in Camellia section Thea reveals the ancient origin of tea plants from a genetically modified ancestor. Front Plant Sci. 2022;13:997762. doi 10.3389/fpls.2022. 997762

14. Chen K., Liu H., Blevins T., Hao J., Otten L. Extensive natural Agrobacterium-induced transformation in the genus Camellia. Planta. 2023;258(4):81. doi 10.1007/s00425-023-04234-9

15. Christey M.C. Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant. 2001;37:687-700. doi 10.1007/s11627-001-0120-0

16. Dehairs J., Talebi A., Cherifi Y., Swinnen J.V. CRISP-ID: decoding CRISPR mediated indels by Sanger sequencing. Sci Rep. 2016;6: 28973. doi 10.1038/srep28973

17. Diaz-Garcia L., Rodriguez-Bonilla L., Rohde J., Smith T., Zalapa J. Pacbio sequencing reveals identical organelle genomes between American cranberry (Vaccinium macrocarpon Ait.) and a wild relative. Genes (Basel). 2019;10(4):291. doi 10.3390/genes10040291

18. Doronina L., Feigin C.Y., Schmitz J. Reunion of Australasian possums by shared SINE insertions. Syst Biol. 2022;71(5):1045-1053. doi 10.1093/sysbio/syac025

19. Ellis J.G., Ryder M.M., Tate M.E. Agrobacterium tumefaciens TR-DNA encodes a pathway for agropine biosynthesis. Mol Gen Genet. 1984; 195:466-473. doi 10.1007/BF00341448

20. Fricano A., Bakaher N., Del Corvo M., Piffanelli P., Donini P., Stella A., Ivanov N.V., Pozzi C. Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm. BMC Genet. 2012;13:18. doi 10.1186/1471-2156-13-18

21. Furner I.J., Huffman G.A., Amasino R.M. An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature. 1986;319: 422-427. doi 10.1038/319422a0

22. Gaut B.S., Mortont B.R., McCaig B.C., Clegg M.T. Substitution rate comparisons between grasses and palms: synonymous rate differen­ ces at the nuclear gene Adh parallel rate differences at the plastid gene rbcL (orthology/nucleotide substitution rates/molecular clock). Proc Natl Acad Sci USA. 1996;93(19):10274-10279. doi 10.1073/pnas.93.19.10274

23. Gelvin S.B. Plant DNA repair and Agrobacterium T-DNA integration. Int J Mol Sci. 2021;22(16):8458. doi 10.3390/ijms22168458

24. Hancock J.F., Lyrene P., Finn C.E., Vorsa N., Lobos G.A. Blueberries and cranberries. In: Hancock J.F. (Ed.) Temperate Fruit Crop Breeding. Springer, 2008;115-150. doi 10.1007/978-1-4020-6907-9_4

25. Hansen G., Larribe M., Vaubert D., Tempe J., Biermann B.J., Montoya A.L., Chilton M.-D., Brevet J. Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci USA. 1991;88(17):7763-7767. doi 10.1073/pnas.88. 17.7763

26. Haubold B., Wiehe T. Statistics of divergence times. Mol Biol Evol. 2001; 18(7):1157-1160. doi 10.1093/oxfordjournals.molbev.a003902

27. Intrieri M.C., Buiatti M. The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol Phylogenet Evol. 2001;20(1):100-110. doi 10.1006/mpev.2001.0927

28. Jouanin L. Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid. 1984;12(2):91-102. doi 10.1016/0147-619x(84)90055-6

29. Kawash J., Colt K., Hartwick N.T., Abramson B.W., Vorsa N., Polashock J.J., Michael T.P. Contrasting a reference cranberry genome to a crop wild relative provides insights into adaptation, domestication, and breeding. PLoS One. 2022;17(3):e0264966. doi 10.1371/journal.pone.0264966

30. Khafizova G.V., Matveeva T.V. Polymorphism in sequences of agrobacterial origin in Nicotiana tabacum cultivars. Russ J Genet. 2020; 56(10):1215-1217. doi 10.1134/S1022795420100051

31. Khafizova G.V., Sierro N., Ivanov N.V., Sokornova S.V., Polev D.E., Matveeva T.V. Nicotiana noctiflora Hook. genome contains two cellular T-DNAs with functional genes. Plants (Basel). 2023;12(22): 3787. doi 10.3390/plants12223787

32. Knapp S., Chase M.W., Clarkso J.J. Nomenclature changes and a new sectional classification in Nicotiana (Solanaceae). Taxon. 2004; 53(1):73-82. doi 10.2307/4135490

33. Koppolu R., Upadhyaya H.D., Dwivedi S.L., Hoisington D.A., Varshney R.K. Genetic relationships among seven sections of genus Arachis studied by using SSR markers. BMC Plant Biol. 2010; 10:15. doi 10.1186/1471-2229-10-15

34. Krapovickas A., Gregory W.C. Taxonomy of the genus Arachis (Leguminosae). Bonplandia. 2007;16(Supl.):1-205. doi 10.30972/bon. 160158

35. Kron K., Powell E., Luteyn J. Phylogenetic relationships within the blueberry tribe (Vaccinieae, Ericaceae) based on sequence data from MATK and nuclear ribosomal ITS regions, with comments on the placement of Satyria. Am J Bot. 2002;89(2):327-336. doi 10.3732/ajb.89.2.327

36. Kuritzin A., Kischka T., Schmitz J., Churakov G. Incomplete lineage sorting and hybridization statistics for large-scale retroposon insertion data. PLoS Comput Biol. 2016;12(3):e1004812. doi 10.1371/journal.pcbi.1004812

37. Leisner C.P., Kamileen M.O., Conway M.E., O’Connor S.E., Buell C.R. Differential iridoid production as revealed by a diversity panel of 84 cultivated and wild blueberry species. PLoS One. 2017; 12(6):e0179417. doi 10.1371/journal.pone.0179417

38. Leitch I.J., Hanson L., Lim K.Y., Kovarik A., Chase M.W., Clarkson J.J., Leitch A.R. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot. 2008;101(6): 805-814. doi 10.1093/aob/mcm326

39. Lewis R.S., Nicholson J.S. Aspects of the evolution of Nicotiana tabacum L. and the status of the United States Nicotiana germplasm collection. Genet Resour Crop Evol. 2007;54:727-740. doi 10.1007/s10722-006-0024-2

40. Lynch M., Conery J.S. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151-1155. doi 10.1126/science.290.5494.1151

41. Martin M., Patterson M., Garg S., Fischer S., Pisanti N., Klau G.W., Schöenhuth A., Marschall T. WhatsHap: fast and accurate readbased phasing. bioRxiv. 2016. doi 10.1101/085050

42. Matveeva T. New naturally transgenic plants: 2020 update. Bio Comm. 2021;66(1):36-46. doi 10.21638/SPBU03.2021.105

43. Matveeva T.V. Why do plants need agrobacterial genes? Ecol Genet. 2021;19(4):365-375. doi 10.17816/ecogen89905

44. Matveeva T.V., Otten L. Widespread occurrence of natural genetic transformation of plants by Agrobacterium. Plant Mol Biol. 2019; 101(4-5):415-437. doi 10.1007/s11103-019-00913-y

45. Matveeva T.V., Otten L. Opine biosynthesis in naturally transgenic plants: genes and products. Phytochemistry. 2021;189:112813. doi 10.1016/j.phytochem.2021.112813

46. Matveeva T.V., Pavlova O.A., Bogomaz D.I., Demkovich A.E., Lutova L.A. Molecular markers for plant species identification and phylogenetics. Ecol Genet. 2011;9(1):32-43. doi 10.17816/ecogen 9132-43 (in Russian)

47. Meyer A.D., Ichikawa T., Meins F. Horizontal gene transfer: regulated expression of a tobacco homologue of the Agrobacterium rhizogenes rolC gene. Mol Gen Genet. 1995;249(3):265-273. doi 10.1007/BF00290526

48. Min T.L., Bartholomew B. Theaceae. In: Wu Z.Y., Raven P.H. (Eds) Flora of China. Vol. 12. St Louis: Science Press, Beijing & Missouri Botanical Garden Press, 2007;323-450

49. Mohajjel-Shoja H., Clément B., Perot J., Alioua M., Otten L. Biological activity of the Agrobacterium rhizogenes-derived trolC gene of Nicotiana tabacum and its functional relation to other plast genes. Mol Plant Microbe Interact. 2011;24(1):44-53. doi 10.1094/MPMI-06-10-0139

50. Moon H.S., Nifong J.M., Nicholson J.S., Heineman A., Lion K., Van der Hoeven R., Lewis R.S. Microsatellite‐based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci. 2009;49(6): 2149-2159. doi 10.2135/cropsci2009.01.0024

51. Moretzsohn M.C., Gouvea E.G., Inglis P.W., Leal-Bertioli S.C.M., Valls J.F.M., Bertioli D.J. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot. 2013; 111(1):113-126. doi 10.1093/aob/mcs237

52. Nester E.W. Agrobacterium: nature’s genetic engineer. Front Plant Sci. 2015;5:730. doi 10.3389/fpls.2014.00730

53. Otten L. Natural Agrobacterium-mediated transformation in the genus Nicotiana. In: Ivanov N.V., Sierro N., Peitsch M.C. (Eds) The Tobacco Plant Genome. Compendium of Plant Genomes. Cham: Springer, 2020;195-209. doi 10.1007/978-3-030-29493-9_12

54. Powell E., Kron K. Molecular systematics of the northern Andean blueberries (Vaccinieae, Vaccinioideae, Ericaceae). Int J Plant Sci. 2003;164(6):987-995. doi 10.1086/378653

55. Ren N., Timko M.P. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome. 2001;44(4):559-571. doi 10.1139/g01-060

56. Rossi L., Bindler G., Pijnenburg H., Isaac P.G., Giraud-Henry I., Mahe M., Gadani F. Potential of molecular marker analysis for variety identification in processed tobacco. Plant Varieties Seeds. 2001;14(2):89-102

57. Schell J., Van Montagu M. The Ti-plasmid of Agrobacterium tumefaciens, a natural vector for the introduction of nif genes in plants? In: Genetic Engineering for Nitrogen Fixation. Basic Life Sciences. Vol. 9. Springer, 1977;159-179. doi 10.1007/978-1-4684-0880-5_12

58. Schlautman B., Covarrubias-Pazaran G., Fajardo D., Steffan S., Zalapa J. Discriminating power of microsatellites in cranberry organelles for taxonomic studies in Vaccinium and Ericaceae. Genet Resour Crop Evol. 2017;64(3):451-466. doi 10.1007/s10722-016-0371-6

59. Schrinner S.D., Mari R.S., Ebler J., Rautiainen M., Seillier L., Reimer J.J., Usadel B., Marschall T., Klau G.W. Haplotype threading: accurate polyploid phasing from long reads. Genome Biol. 2020; 21(1):252. doi 10.1186/s13059-020-02158-1 Shedlock A.M., Okada N. SINE insertions: powerful tools for molecular systematics. BioEssays. 2000;22(2):148-160. doi 10.1002/(SICI) 1521-1878(200002)22:2<148::AID-BIES6>3.0.CO;2-Z

60. Sierro N., Battey J.N., Ouadi S., Bakaher N., Bovet L., Willig A., Goepfert S., Peitsch M.C., Ivanov N.V. The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun. 2014;5(1):3833. doi 10.1038/ncomms4833

61. Singer K. The mechanism of T-DNA integration: some major unresolved questions. Curr Top Microbiol Immunol. 2018;418:287-317. doi 10.1007/82_2018_98

62. Snyder M., Adey A., Kitzman J.O., Shendure J. Haplotype-resolved genome sequencing: experimental methods and applications. Nat Rev Genet. 2015;16(6):344-358. doi 10.1038/nrg3903

63. Soltis D.E., Mavrodiev E.V., Doyle J.J., Rauscher J., Soltis P.S. ITS and ETS sequence data and phylogeny reconstruction in allopolyploids and hybrids. Syst Bot. 2008;33(1):7-20. doi 10.1600/036364408783887401

64. Stalker H.T. Utilizing wild species for peanut improvement. Crop Sci. 2017;57(3):1102-1120. doi 10.2135/cropsci2016.09.0824

65. Sultana N., Menzel G., Heitkam T., Kojima K., Bao W., Serçe S. Bioinformatic and molecular analysis of satellite repeat diversity in Vaccinium genomes. Genes (Basel). 2020;11(5):527. doi 10.3390/ genes11050527

66. Sun X., Jiao C., Schwaninger H., Chao C.T., Ma Y., Duan N., Khan A., Ban S., Xu K., Cheng L., Zhong G., Fei Z. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat Genet. 2020;52(12):1423-1432. doi 10.1038/s41588-020-00723-9

67. Suzuki K., Yamashita I., Tanaka N. Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J. 2002;32(5):775-787. doi 10.1046/j.1365-313X.2002.01468.x

68. Tanaka H., Hori T., Yamamoto S., Toyoda A., Yano K., Yamane K., Itoh T. Haplotype-resolved chromosomal-level assembly of wasabi (Eutrema japonicum) genome. Sci Data. 2023;10(1):441. doi 10.1038/s41597-023-02356-z

69. Tepfer D. Genetic transformation using Agrobacterium rhizogenes. Physiol Plant. 1990;79(1):140-146. doi 10.1111/j.1399-3054.1990. tb05876.x

70. Tian X., Shi L., Guo J., Fu L., Du P., Huang B., Wu Y., Zhang X., Wang Z. Chloroplast phylogenomic analyses reveal a maternal hybridization event leading to the formation of cultivated peanuts. Front Plant Sci. 2021;12:804568. doi 10.3389/fpls.2021.804568

71. Tiley G.P., Crowl A.A., Manos P.S., Sessa E.B., Solís-Lemus C., Yoder A.D., Burleigh J.G., Smith S. Benefits and limits of phasing alleles for network inference of allopolyploid complexes. Syst Biol. 2024;73(4):666-682. doi 10.1093/sysbio/syae024

72. Tong Z., Fang D., Chen X., Jiao F., Zhang Y., Li Y., Xiao B. Genomewide association study of leaf chemistry traits in tobacco. Breed Sci. 2020;70(3):253-264. doi 10.1270/jsbbs.19067

73. Tzfira T., Li J., Lacroix B., Citovsky V. Agrobacterium T-DNA integration: molecules and models. Trends Genet. 2004;20(8):375-383. doi 10.1016/j.tig.2004.06.004

74. Vorsa N., Zalapa J. Domestication, genetics, and genomics of the American cranberry. In: Goldman I. (Ed.) Plant Breeding Reviews. Vol. 43. John Wiley & Sons, Inc., 2019;279-315. doi 10.1002/9781119616801.ch8

75. Wang H., Guo X., Hu X., Li T., Fu X., Liu R. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem. 2017; 217:773-781. doi 10.1016/j.foodchem.2016.09.002

76. Wang Y., Zhao Y., Bollas A., Wang Y., Au K.F. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021; 39(11):1348-1365. doi 10.1038/s41587-021-01108-x

77. Wenger A.M., Peluso P., Rowell W.J., Chang P., Hall R.J., Concepcion G.T., Ebler J., … Li H., Koren S., Carroll A., Rank D.R., Hunkapiller M.W. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37(10):1155-1162. doi 10.1038/s41587-019-0217-9

78. White F.F., Ghidossi G., Gordon M.P., Nester E.W. Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci USA. 1982;79(10):3193-3197. doi 10.1073/pnas.79.10.3193

79. White F.F., Garfinkel D.J., Huffman G.A., Gordon M.P., Nester E.W. Sequence homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature. 1983;301:348-350. doi 10.1038/301348a0

80. White F., Taylor B., Huffman G., Gordon M., Nester E. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol. 1985;164(1): 33-44. doi 10.1128/jb.164.1.33-44.1985

81. Wu Q., Tong W., Zhao H., Ge R., Li R., Huang J., Li F., Wang Y., Mallano A.I., Deng W., Wang W., Wan X., Zhang Z., Xia E. Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite evolution of 116 Camellia plants. Plant J. 2022;111(2): 406-421. doi 10.1111/tpj.15799

82. Xie X., Ma X., Liu Y.G. Decoding Sanger sequencing chromatograms from CRISPR-induced mutations. Methods Mol Biol. 2019;1917: 33-43. doi 10.1007/978-1-4939-8991-1_3

83. Yukawa M., Tsudzuki T., Sugiura M. The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genom. 2006; 275(4):367-373. doi 10.1007/s00438-005-0092-6

84. Zalapa J.E., Bougie T.C., Bougie T.A., Schlautman B.J., Wiesman E., Guzman A., Fajardo D.A., Steffan S., Smith T. Clonal diversity and genetic differentiation revealed by SSR markers in wild Vaccinium macrocarpon and Vaccinium oxycoccos. Ann Appl Biol. 2015; 166(2):196-207. doi 10.1111/aab.12173

85. Zhang X., Wu R., Wang Y., Yu J., Tang H. Unzipping haplotypes in diploid and polyploid genomes. Comput Struct Biotechnol J. 2020; 18:66-72. doi 10.1016/j.csbj.2019.11.011

86. Zhidkin R., Zhurbenko P., Bogomaz O., Gorodilova E., Katsapov I., Antropov D., Matveeva T. Biodiversity of rolB/C-like natural transgene in the genus Vaccinium L. and its application for phylogenetic studies. Int J Mol Sci. 2023;24(8):6932. doi 10.3390/ijms24086932


Review

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)