Preview

Vavilov Journal of Genetics and Breeding

Advanced search

A higher far-red intensity promotes the transition to flowering in triticale grown under speed breeding conditions

https://doi.org/10.18699/vjgb-25-96

Abstract

It typically takes 12 to 15 years to develop a new promising variety. One of the ways to reduce this time is through speed breeding. This method allows for up to six consecutive generations of spring cereals in a single year. Although far-red light is often overlooked in speed breeding protocols, it serves as a potent inducer of accelerated flowering in various plant species. In this study, we explored the advantages of far-red light as a means to optimize the speed breeding of spring triticale. Experimental plants were cultivated under three conditions with different red to far-red ratios at 660 nm (R – red) and 730 nm (FR – far red): 1) 3.75 (R > FR); 2) 0.8 (R = FR) and 3) 0.3 (R < FR). We found that the onset of triticale flowering occurred significantly earlier at the lowest red to far-red light ratio (R/FR 0.3). On average, plants bloomed 2.6 and 4.1 days earlier in a mineral wool and a soil mixture at R/FR 0.3, respectively, than those grown at R/FR 3.75. A negative effect of higher-intensity far-red light on the reproductive system of triticale was observed. Additionally, seeds obtained from plants grown under higher-intensity far-red light showed significantly lower germination energy and capacity. No differences were found in the regenerative capacity of isolated embryos in vitro obtained from plants grown under the different spectral compositions. Our results demonstrate that the accelerated triticale development requires not only the involvement of far-red light, but also a specific red to far-red light ratio close to 0.3. A modified speed breeding protocol relying on this ratio enabled flowering to commence as early as 33.9 ± 1.2 days after sowing. The same triticale variety grown under field conditions in the Krasnodar region and in traditional laboratory growing conditions with a photoperiod of 18/6 h day/night flowered 25 to 29 days later than those cultivated under the speed breeding conditions.

About the Authors

A. O. Blinkov
All-Russian Research Institute of Agricultural Biotechnology
Russian Federation

 Moscow 



V. M. Nagamova
All-Russian Research Institute of Agricultural Biotechnology
Russian Federation

 Moscow 



Y. V. Minkova
All-Russian Research Institute of Agricultural Biotechnology
Russian Federation

 Moscow 



N. Yu. Svistunova
All-Russian Research Institute of Agricultural Biotechnology
Russian Federation

 Moscow 



S. Radzeniece
All-Russian Research Institute of Agricultural Biotechnology
Russian Federation

 Moscow 



A. A. Kocheshkova
All-Russian Research Institute of Agricultural Biotechnology
Russian Federation

 Moscow 



N. N. Sleptsov
All-Russian Research Institute of Agricultural Biotechnology; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

 Moscow 



A. V. Freymans
LLC “Climbiotech”
Russian Federation

 Moscow 



V. V. Panchenko
P.P. Lukyanenko National Grain Centre
Russian Federation

 Krasnodar 



A. G. Chernook
All-Russian Research Institute of Agricultural Biotechnology
Russian Federation

 Moscow 



G. I. Karlov
All-Russian Research Institute of Agricultural Biotechnology
Russian Federation

 Moscow 



M. G. Divashuk
All-Russian Research Institute of Agricultural Biotechnology
Russian Federation

 Moscow 



References

1. Alahmad S., Dinglasan E., Leung K.M., Riaz A., Derbal N., VossFels K.P., Able C.J., Bassi F.M., Christopher C.J., Hickey L.T. Speed breeding for multiple quantitative traits in durum wheat. Plant Methods. 2018;14:36. doi 10.1186/s13007-018-0302-y

2. Arseniuk E. Recent developments in triticale breeding research and production – an Overview. Ekin J Crop Breed Genet. 2019;5(2): 68-73

3. Cha J.K., Lee J.H., Lee S.M., Ko J.M., Shin D.J. Heading date and growth character of Korean wheat cultivars by controlling photoperiod for rapid generation advancement. Korean J Breed Sci. 2020; 52(1):20-24. doi 10.9787/KJBS.2020.52.1.20

4. Cha J.K., Park M.R., Shin D., Kwon Y., Lee S.M., Ko J.M., Kim K.M., Lee J.H. Growth characteristics of triticale under long-day photoperiod for rapid generation advancement. Korean J Breed Sci. 2021; 53(3):200-205. doi 10.9787/KJBS.2021.53.3.200

5. Cha J.K., O’Connor K., Alahmad S., Lee J.H., Dinglasan E., Park H., Lee S.M., … Kim K.M., Ko J.M., Hickey L.T., Shin D., Dixon L.E. Speed vernalization to accelerate generation advance in winter cereal crops. Mol Plant. 2022;15(8):1300-1309. doi 10.1016/j.molp.2022.06.012

6. Choi H., Back S., Kim G.W., Lee K., Venkatesh J., Lee H.B., Kwon J.K., Kang B.C. Development of a speed breeding protocol with flowering gene investigation in pepper (Capsicum annuum). Front Plant Sci. 2023;14:1151765. doi 10.3389/fpls.2023.1151765

7. Davis M.H., Simmons S.R. Far-red light reflected from neighbouring vegetation promotes shoot elongation and accelerates flowering in spring barley plants. Plant Cell Environ. 1994;17(7):829-836. doi 10.1111/j.1365-3040.1994.tb00177.x

8. Deitzer G.F., Hayes R., Jabben M. Kinetics and time dependence of the effect of far-red light on the photoperiodic induction of flowering in Wintex barley. Plant Physiol. 1979;64(6):1015-1021. doi 10.1104/pp.64.6.1015

9. Demotes-Mainard S., Peron T., Corot A., Bertheloot J., Gourrierec J.L., Pelleschi-Travier S., Crespel L., Morel P., Huche-Thelier L., Boumaza R., Vian A., Guerin V., Leduc N., Sakr S. Plant responses to red and far-red lights, applications in horticulture. Envir Exp Bot. 2016; 121:4-21. doi 10.1016/j.envexpbot.2015.05.010

10. Dreccer M.F., Zwart A.B., Schmidt R.C., Condon A.G., Awasi M.A., Grant T.J., Galle A., Bourot S., Frohberg C. Wheat yield potential can be maximized by increasing red to far-red light conditions at critical developmental stages. Plant Cell Environ. 2022;45(9):2652- 2670. doi 10.1111/pce.14390

11. Faccini N., Morcia C., Terzi V., Rizza F., Badeck F.W. Triticale in Italy. Biology. 2023;2(10):1308. doi 10.3390/biology12101308

12. Fedyaeva A.V., Salina E.A., Shumny V.K. Pre-harvest sprouting in soft winter wheat (Triticum aestivum L.) and evaluation methods. Russ J Genet. 2023;59(1):1-11. doi 10.1134/S1022795423010052

13. Ficht A., Bruch A., Rajcan I., Pozniak C., Lyons E.M. Evaluation of the impact of photoperiod and light intensity on decreasing days to maturity in winter wheat. Crop Sci. 2023;63(2):812-821. doi 10.1002/csc2.20886

14. Ghosh S., Watson A., Gonzalez-Navarro O.E., Ramirez-Gonzalez R.H., Yanes L., Mendoza-Suárez M., Simmonds J., … Domoney C., Uauy C., Hazard B., Wulff B.B.H., Hickey L.T. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc. 2018;13(12):2944-2963. doi 10.1038/s41596-018-0072-z

15. Hickey L.T., German S.E., Pereyra S.A., Diaz J.E., Ziems L.A., Fow­ ler R.A., Platz G.J., Franckowiak J.D., Dieters M.J. Speed breeding for multiple disease resistance in barley. Euphytica. 2017;213:64. doi 10.1007/s10681-016-1803-2

16. Huber M., de Boer H.J., Romanowski A., van Veen H., Buti S., Kah­ lon P.S., van der Meijden J., Koch J., Pierik R. Far-red light enrichment affects gene expression and architecture as well as growth and photosynthesis in rice. Plant Cell Environ. 2024;47(8):2936-2953. doi 10.1111/pce.14909

17. Jähne F., Hahn V., Würschum T., Leiser W.L. Speed breeding short-day crops by LED-controlled light schemes. Theor Appl Genet. 2020; 133(8):2335-2342. doi 10.1007/s00122-020-03601-4

18. Kalituho L.N., Chaika M.T., Kabashnikova L.F., Makarov V.N., Khirpach V.A. On the phytochrome mediated action of brassinosteroids. Proc Plant Growth Regul Soc Am. 1997;24:140-145

19. Kegge W., Ninkovic V., Glinwood R., Welschen R.A.M., Voese­ nek L.A.C.J., Pierik R. Red: far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Ann Bot. 2015;115(6):961-970. doi 10.1093/aob/mcv036

20. Kigoni M., Choi M., Arbelaez J.D. ‘Single-Seed-SpeedBulks’: a protocol that combines ‘speed breeding’ with a cost-efficient modified single-seed descent method for rapid-generation-advancement in oat (Avena sativa L.). Plant Methods. 2023;19(1):92. doi 10.1186/s13007-023-01067-1

21. Kippes N., VanGessel C., Hamilton J., Akpinar A., Budak H., Dubcovsky J., Pearce S. Effect of phyB and phyC loss-of-function mutations on the wheat transcriptome under short and long day photoperiods. BMC Plant Biol. 2020;20:297. doi 10.1186/s12870-020-02506-0

22. Lebedeva M.A., Dodueva I.E., Gancheva M.S., Tvorogova V.E., Kuz­ netsova K.A., Lutova L.A. The evolutionary aspects of flowering control: Florigens and Anti-florigens. Russ J Genet. 2020;56(11): 1323-1344. doi 10.1134/S102279542011006X

23. Lei K., Tan Q., Zhu L., Xu L., Yang S., Hu J., Gao L., Hou P., Shao Yu., Jiang D., Cao W., Dai T., Tian Z. Low red/far-red ratio can induce cytokinin degradation resulting in the inhibition of tillering in wheat (Triticum aestivum L.). Front Plant Sci. 2022;13:971003. doi 10.3389/fpls.2022.971003

24. Lei K., Hu H., Chang M., Sun C., Ullah A., Yu J., Dong C., Gao Q., Jiang D., Cao W., Tian Z., Dai T. A low red/far-red ratio restricts nitrogen assimilation by inhibiting nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 in wheat (Triticum aestivum L.). Plant Physiol Biochem. 2024;206:107850. doi 10.1016/j.plaphy.2023.107850

25. Lekontzeva T.A., Yufereva N. I., Statzenko E.S. Assessment of initial material (base line) for creation of spring triticale varieties in the climate of Volgo-Vyatka region. Dal’nevostochnyy Agrarnyy Vestnik = The Far East Agrarian Herald. 2019;2(50):45-52. doi 10.24411/1999-6837-2019-2-45-52 (in Russian)

26. Li H., Zhou Y., Xin W., Wei Y., Zhang J., Guo L. Wheat breeding in northern China: achievements and technical advances. Crop J. 2019; 7(6):718-729. doi 10.1016/j.cj.2019.09.003

27. Liu H., Zwer P., Wang H., Liu C., Lu Z., Wang Y., Yan G. A fast gene­ ration cycling system for oat and triticale breeding. Plant Breed. 2016;135(5):574-579. doi 10.1111/pbr.12408

28. Losert D., Maurer H.P., Marulanda J.J., Würschum T. Phenotypic and genotypic analyses of diversity and breeding progress in European triticale (× Triticosecale Wittmack). Plant Breed. 2017;136(1): 18-27. doi 10.1111/pbr.12433

29. Marenkova A.G., Blinkov A.O., Radzeniece S., Kocheshkova A.A., Karlov G.I., Divashuk M.G. Testing and modification of the protocol for accelerated growth of malting barley under speed breeding conditions. Nanobiotechnol Rep. 2024;19(5):808-814. doi 10.1134/S2635167624601955

30. Markham M.Y., Stoltenberg D.E. Corn morphology, mass, and grain yield as affected by early-season red: Far-red light environments. Crop Sci. 2010;50(1):273-280. doi 10.2135/cropsci2008. 10.0614

31. Mergoum M., Singh P.K., Pena R.J., Lozano-del Río A.J., Cooper K.V., Salmon D.F., Gómez Macpherson H. Triticale: A “New” Crop with Old Challenges. In: Carena M. (Eds). Cereals. Handbook of Plant Breeding. Vol. 3. Springer, 2009;267-287. doi 10.1007/978-0-387-72297-9

32. Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473- 497. doi 10.1111/j.1399-3054.1962.tb08052.x

33. Radivon V.A., Zhukovsky A.G. Analysis of the susceptibility of spring triticale varieties to diseases for 2012–2022. Zashchita Rasteniy = Plant Protection. 2023;1(47):128-135 (in Russian)

34. Rajcan I., Chandler K.J., Swanton C.J. Red-far-red ratio of reflected light: a hypothesis of why early-season weed control is important in corn. Weed Sci. 2004;52(5):774-778. doi 10.1614/WS-03-158R

35. Sheerin D.J., Hiltbrunner A. Molecular mechanisms and ecological function of far-red light signalling. Plant Cell Environ. 2017;40(11): 2509-2529. doi 10.1111/pce.12915

36. Smith H. Phytochromes and light signal perception by plants – an emerging synthesis. Nature. 2000;407(6804):585-591. doi 10.1038/35036500

37. Song Y., Duan X., Wang P., Li X., Yuan X., Wang Z., Li X., Yuan X., Wang Z., Wan L., Yang G., Hong D. Comprehensive speed breeding: a high‐throughput and rapid generation system for long‐day crops. Plant Biotechnol J. 2022;20(1):13-15. doi 10.1111/pbi.13726

38. Tanaka J., Hayashi T., Iwata H. A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breed Sci. 2016;66(4):542-551. doi 10.1270/jsbbs.15038

39. Timonova E.M., Adonina I.G., Salina E.A. The influence of combinations of alien translocations on in vitro androgenesis in spring common wheat (Triticum aestivum L.). Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2022;183(1):127-134. doi 10.30901/2227-8834-2022-1- 127-134 (in Russian)

40. Toyota M., Tatewaki N., Morokuma M., Kusutani A. Tillering respon­ ses to high red/far-red ratio of four Japanese wheat cultivars. Plant Prod Sci. 2014;17(2):124-130. doi 10.1626/pps.17.124

41. Ugarte C.C., Trupkin S.A., Ghiglione H., Slafer G., Casal J.J. Low red/far-red ratios delay spike and stem growth in wheat. J Exp Bot. 2010;61(11):3151-3162. doi 10.1093/jxb/erq140

42. Vikas V.K., Sivasamy M., Jayaprakash P., Vinod K.K., Geetha M., Nisha R., Peter J. Customized speed breeding as a potential tool to advance generation in wheat. Indian J Genet Plant Breed. 2021; 81(2):199-207. doi 10.31742/IJGPB.81.2.3

43. Watson A., Ghosh S., Williams M.J., Cuddy W.S., Simmonds J., Rey M.D., Hatta M.A.M., … Uauy C., Boden S.A., Park R.F., Wulff B.B.H., Hickey L.T. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants. 2018;4(1):23-29. doi 10.1038/s41477-017-0083-8

44. Zadoks J.С., Chang T.T., Konzak C.F. A decimal code for the growth stages of cereals. Weed Res. 1974;14(6):415-421. doi 10.1111/j.1365-3180.1974.tb01084.x

45. Zakieh M., Gaikpa D.S., Leiva Sandoval F., Alamrani M., Henriksson T., Odilbekov F., Chawade A. Characterizing winter wheat germplasm for fusarium head blight resistance under accelerated growth conditions. Front Plant Sci. 2021;12:705006. doi 10.3389/fpls.2021.705006

46. Zheng Z., Gao S., Wang H., Liu C. Shortening generation times for winter cereals by vernalizing seedlings from young embryos at 10 degree Celsius. Plant Breed. 2023;142(2):202-210. doi 10.1111/pbr.13074


Review

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)