Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Prediction and verification of the influence of the rs367781716 SN P on the interaction of ТАТА -binding protein with the promoter of the human АВСА9 gene

https://doi.org/10.18699/VJ15.085

Abstract

The high-throughput sequencing project “1 000 Genomes” made it possible to catalog and utilize genetic loci and single nucleotide polymorphisms (SNPs) in medicine. Analysis of SNP markers (significantly frequent differences of individual genomes of patients from the reference human genome) allows physicians to optimize treatment. On the other hand, tens of millions of unannotated SNPs correspond to a gigantic number of false positive (false negative) candidate SNP markers that are selected by computer methods for comparison of their frequency in patients with that in healthy people. This approach contributes to undervaluation of clinically relevant SNPs and to unnecessary computational expenses (on verification of neutral SNPs). Preclinical empirical verification of possible candidate SNP markers may eliminate neutral SNPs from the dataset. In the present study, we found, using the SNP_TATA_Comparator web service, the unannotated SNP rs367781716: the substitution of ancestral T (health) with minor C at position –37 before the transcription initiation site of the АВСА9 gene. This SNP significantly reduces affinity of TATAbinding protein (TBP) for this gene’s promoter and corresponds to a deficiency (low protein level) of the АВСА9 gene product (the transporter ATP-binding cassette A9) in patients with the –37C allele. For preclinical empirical verification of rs367781716, we used an electrophoretic mobility shift assay (EMSA) to measure the rates of formation (ka) and decay (kd) of the complexes of TBP with an oligonucleotide matching either allele –37C or –37T of the АВСА9 gene. We found that the rate of formation (ka) of the TBP/TATA complex for the minor allele is 2.4-fold lower than that for the ancestral allele. We calculated the empirical value of the change in the equilibrium constant of dissociation (KD = kd /ka), which characterizes binding affinity of TBP for a promoter containing the ТАТА box. This empirical value matched the value predicted by SNP_ТАТА _Comparator within the margin of error of the measurements and calculations. We also determined the half-life and Gibbs free energy of the complex of TBP with the АВСА9 promoter. Possible phenotypic manifestations of the candidate SNP marker rs367781716 are discussed.

About the Authors

O. V. Arkova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


I. A. Drachkova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


T. V. Arshinova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


D. A. Rasskazov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


V. V. Suslov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


P. M. Ponomarenko
Children’s Hospital Los Angeles, University of Southern California, CA 90027, USA
Russian Federation


M. P. Ponomarenko
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
Russian Federation


N. A. Kolchanov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
Russian Federation


L. K. Savinkova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


References

1. Arkova O.V., Kuznetsov N.A.,

2. Baecklund F., Foo J.N., Bracci P., Darabi H., Karlsson R., Hjalgrim H., Rosenquist R., Adami H.-O., Glimelius B., Melbye M., Conde L., Liu J., Humphreys K., Skibola C.F., Smedby K.E. A comprehensive evaluation of the role of genetic variation in follicular lymphoma survival. BMC Med. Genet. 2014;15:113. DOI 10.1186/s12881-014-0113-6

3. Calpe-Berdiel L., Zhao Y., de Graauw M., Ye D., van Santbrink P.J., Mommaas A.M., Foks A., Bot M., Meurs I., Kuiper J., Mack J.T., Van Eck M., Tew K.D., van Berkel T.J. Macrophage ABCA2 deletion modulates intracellular cholesterol deposition, affects macrophage apoptosis, and decreases early atherosclerosis in LDL receptor knockout mice. Atherosclerosis. 2012;223(2):332-341. DOI 10.1016/j.atherosclerosis.2012.05.039

4. Colonna V., Ayub Q., Chen Y., Pagani L., Luisi P., Pybus M., Garrison E., Xue Y., Tyler-Smith C.; The 1000 Genomes Project Consortium, Abecasis G.R., Auton A., Brooks L.D., DePristo M.A., Durbin R. M., Handsaker R.E., Kang H.M., Marth G.T., McVean G.A. Human genomic regions with exceptionally high levels of population differentiation identified from 911 whole-genome sequences. Genome Biol. 2014;15(6):R88. DOI 10.1186/gb-2014-15-6-r88

5. Dean M., Allikmets R. Complete characterization of the human ABC gene family. J. Bioenerg. Biomembr. 2001;33(6):475-479. DOI 10.1023/A:1012823120935

6. Dean M., Hamon Y., Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 2001;42(7):1007-1017.

7. Drachkova I.A., Arshinova T.V., Ponomarenko P.M., Merkulova T.I., Kolchanov N.A., Savinkova L.K. Effect of TATA box polymorphisms in the human β-globin gene promoter associated with β-thalassemia on the interaction of the TATA-binding protein. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2010;14(4):698-705.

8. Drachkova I., Savinkova L., Arshinova T., Ponomarenko M., Peltek S., Kolchanov N. The mechanism by which TATA-box polymorphisms associated with human hereditary diseases influence interactions with the TATA-binding protein. Hum. Mutat. 2014;35(5):601-608. DOI 10.1002/humu.22535

9. Drachkova I.A., Shekhovtsov S.V., Peltek S.E., Ponomarenko P.M., Arshinova T.V., Ponomarenko M.P., Merkulova T.I., Savinkova L.K., Kolchanov N.A. Surface plasmon resonance study of the interaction between the human TATA-box binding protein and the TATA element of the NOS2A gene promoter. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2012;16(2):391-396.

10. Dreos R., Ambrosini G., Perier R.C., Bucher P. The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucl. Acids Res. 2015;43(Database issue):D92-D96. DOI 10.1093/nar/gku1111

11. Dreszer T.R., Karolchik D., Zweig A.S., Hinrichs A.S., Raney B.J., Kuhn R.M., Meyer L.R., Wong M., Sloan C.A., Rosenbloom K. R., Roe G., Rhead B., Pohl A., Malladi V.S., Li C.H., Learned K., Kirkup V., Hsu F., Harte R.A., Guruvadoo L., Goldman M., Giardine B. M., Fujita P.A., Diekhans M., Cline M.S., Clawson H., Barber G.P., Haussler D., James Kent W. The UCSC Genome Browser database: extensions and updates 2011. Nucl. Acids Res. 2012:40 (Database issue):D918-D923. DOI 10.1093/nar/gkr1055

12. Harrow J., Frankish A., Gonzalez J.M., Tapanari E., Diekhans M., Kokocinski F., Aken B.L., BarrellD., Zadissa A., Searle S., Barnes I., Bignell A., Boychenko V., Hunt T., Kay M., Mukherjee G., Rajan J., Despacio-Reyes G., Saunders G., Steward C., Harte R., Lin M., Howald C., Tanzer A., Derrien T., Chrast J., Walters N., Balasubramanian S., Pei B., Tress M., Rodriguez J.M., Ezkurdia I., van Baren J., Brent M., Haussler D., Kellis M., Valencia A., Reymond A., Gerstein M., Guigó R., Hubbard T.J. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22(9):1760-1774. DOI 10.1101/gr.135350.111

13. Hedditch E.L., Gao B., Russell A.J., Lu Y., Emmanuel C. , Beesley J., Johnatty S.E., Chen X., Harnett P., George J.; Australian Ovarian Cancer Study Group, Williams R.T., Flemming C., Lambrechts D., Despierre E., Lambrechts S., Vergote I., Karlan B., Lester J., Orsulic S., Walsh C., Fasching P., Beckmann M.W., Ekici A.B., Hein A., Matsuo K., Hosono S., Nakanishi T., Yatabe Y., Pejovic T., Bean Y ., Heitz F., Harter P., du Bois A., Schwaab I., Hogdall E., Kjaer S.K., Jensen A., Hogdall C., Lundvall L., Engelholm S.A., Brown B., Flanagan J., Metcalf M.D., Siddiqui N., Sellers T., Fridley B., Cunningham J., Schildkraut J., Iversen E., Weber R.P., Berchuck A., Goode E., Bowtell D.D., Chenevix-Trench G., deFazio A., Norris M. D., Mac- Gregor S., Haber M., Henderson M.J. ABCA transporter gene expression and poor outcome in epithelial ovarian cancer. J. Natl. Cancer Inst. 2014;106(7):dju149. DOI 10.1093/jnci/dju149

14. Hendig D., Langmann T., Kocken S., Zarbock R., Szliska C., Schmitz G., Kleesiek K., Götting C. Gene expression profiling of ABC transporters in dermal fibroblasts of pseudoxanthoma elasticum patients identifies new candidates involved in PXE pathogenesis. Lab. Invest. 2008;88(12):1303-1315. DOI 10.1038/labinvest.2008.96

15. International HapMap 3 Consortium, Altshuler D.M., Gibbs R.A., Peltonen L., Dermitzakis E., Schaffner S.F, Yu F., Peltonen L., Dermitzakis E., Bonnen P.E., Altshuler D.M., Gibbs R.A., de Bakker P. I., Deloukas P., Gabriel S.B., Gwilliam R., Hunt S., Inouye M., Jia X., Palotie A., Parkin M., Whittaker P., Yu F., Chang K., Hawes A., Lewis L.R., Ren Y., Wheeler D., Gibbs R.A., Muzny D.M., Barnes C., Darvishi K., Hurles M., Korn J.M., Kristiansson K., Lee C., McCarrol S.A., Nemesh J., Dermitzakis E., Keinan A., Montgomery S. B., Pollack S., Price A.L., Soranzo N., Bonnen P.E., Gibbs R. A., Gonzaga- Jauregui C., Keinan A., Price A.L., Yu F., Anttila V., Brodeur W., Daly M.J., Leslie S., McVean G., Moutsianas L., Nguyen H., Schaffner S.F., Zhang Q., Ghori M.J., McGinnis R., McLaren W., Pollack S., Price A.L., Schaffner S.F., Takeuchi F., Grossman S.R., Shlyakhter I., Hostetter E.B., Sabeti P.C., Adebamowo C.A., Foster M.W., Gordon D.R., Licinio J., Manca M.C., Marshall P.A., Matsuda I., Ngare D., Wang V.O., Reddy D., Rotimi C.N., Royal C.D., Sharp R.R., Zeng C., Brooks L.D., McEwen J.E. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467(7311):52-58. DOI 10.1038/nature09298

16. Kaniwa N., Kurose K., Jinno H., Tanaka-Kagawa T., Saito Y., Saeki M., Sawada J., Tohkin M., Hasegawa R. Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide polymorphism 686C> T (P229L) found in an African- American. Drug Metab. Dispos. 2005;33(3):458-465. DOI 10.1124/dmd.104.001800

17. Liu C., Xuan Z. Prioritization of cancer-related genomic variants by SNP association network. Cancer Inform. 2015;14(Suppl. 2):57-70. DOI 10.4137/CIN.S17288

18. Mallal S., Nolan D., Witt C., Masel G., Martin A.M., Moore C., Sayer D., Castley A., Mamotte C., Maxwell D., James I., Christiansen F . T. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse- transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727-732. DOI 10.1016/S0140- 6736(02)07873-X

19. Mironova V.V., Omelyanchuk N.A., Ponomarenko P.M., Ponomarenko M.P., Kolchanov N.A. Specific/nonspecific binding of TBP to promoter DNA of the auxin response factor genes in plants correlated with ARFs function on gene transcription (activator/repressor). Doklady RAN = Proceedings of the Russian Academy of Sciences. 2010;433(4):549-554.

20. Mogno I., Vallania F., Mitra R.D., Cohen B. TATA is a modular component of synthetic promoters. Genome Res. 2010;20(10):1391-1397. DOI 10.1101/gr.106732.110

21. Oram J., Vaughan A. ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ. Res. 2006;99(10):1031-1043. DOI 0.1161/01.res.0000250171.54048.5c

22. Piehler A., Kaminski W.E., Wenzel J., Langmann T., Schmitz G. Molecular structure of a novel cholesterol-responsive A subclass ABC transporter, ABCA9. Biochem. Biophys. Res. Commun. 2002;295(2):408-416. DOI 10.1016/S0006-291X(02)00659-9

23. Ponomarenko M., Mironova V., Gunbin K., Savinkova L. Hogness Box. Brenner’s Encyclopedia of Genetics. Eds S. Maloy, K. Hughes. San Diego: Acad. Press, Elsevier Inc, 2013a;3:491-494. DOI 10.1016/B978-0-12-374984-0.00720-8

24. Ponomarenko M., Savinkova L., Kolchanov N. Initiation Factors. Brenner’s Encyclopedia of Genetics. Eds S. Maloy, K. Hughes. San Diego: Acad. Press, Elsevier Inc. 2013b;4:83-85. DOI 10.1016/B978-0-12-374984-0.00798-1

25. Ponomarenko M.P., Suslov V.V., Gunbin K.V., Ponomarenko M.P., Vishnevsky O.V., Kolchanov N.A., Identification of the relationship between variability of expression of signaling pathway genes in the human brain and affinity of TATA-binding protein to their promoters. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;18(4/3):1219-1230.

26. Ponomarenko P.M., Ponomarenko M.P. Sequence-based prediction of transcription upregulation by auxin in plants. J. Bioinform. Comput. Biol. 2015;13(1). Art.1540009. DOI 10.1142/S0219720015400090

27. Ponomarenko P.M., Ponomarenko M.P., Drachkova I.A., Lysova M.V., Arshinova T.V., Savinkova L.K., Kolchanov N.A. Prediction of the affinity of the TATA-binding protein to TATA boxes with single nucleotide polymorphisms. Molekulyarnaya biologiya = Molecular Biology (Moscow). 2009;43(3):512-520.

28. Ponomarenko P.M., Savinkova L.K., Drachkova I.A., Lysova M.V., Arshinova T.V., Ponomarenko M.P., Kolchanov N.A. A step-by-step model of TBP/TATA box binding allows predicting human hereditary diseases by single nucleotide polymorphism. Doklady RAN = Proceedings of the Russian Academy of Sciences. 2008;419(6):828- 832.

29. Ponomarenko P.M., Suslov V.V., Savinkova L.K., Ponomarenko M.P., Kolchanov N.A. A precise equation of equilibrium of four steps of TBP binding with the TATA box for prognosis of phenotypic manifestation of mutations. Biofizika = Biophysics (Moscow). 2010;55(3);400-414.

30. Pugh B.F. Control of gene expression through regulation of the TATAbinding protein. Gene. 2000;255(1):1-14. DOI 10.1016/S0378-1119(00)00288-2

31. Rasskazov D.A., Gunbin K.V., Ponomarenko P.M., Vishnevsky O.V., Ponomarenko M.P., Afonnikov D.A. SNP_TATA_Comparator: Web-service for comparison of SNPs within gene promotеrs associated with human diseases using the equilibrium equation of the TBP/ TATA complex. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/1):599-606.

32. Savinkova L.K., Drachkova I.A., Arshinova T.V., Ponomarenko P.M., Ponomarenko M.P., Kolchanov N.A. An experimental verification of the predicted effects of promoter TATA-box polymorphisms associated with human diseases on interactions between the TATA boxes and TATA-binding protein. PLoS One. 2013;8(2). Art.e54626. DOI 10.1371/journal.pone.0054626

33. Stewart J.J., Stargell L.A. The stability of the TFIIA-TBP-DNA complex is dependent on the sequence of the TATAAA element. J. Biol. Chem. 2001;276(32):30078-30084. DOI 10.1074/jbc.M105276200

34. Suslov V.V., Ponomarenko P.M., Efimov V.M., Savinkova L.K., Ponomarenko M.P., Kolchanov N.A. SNPs in the HIV-1 TATA box and the AIDS pandemic. J. Bioinform. Comput. Biol. 2010;8(3):607-625. DOI 10.1142/S0219720010004677

35. Suslov V.V., Ponomarenko P.M., Ponomarenko M.P., Drachkova I.A., Arshinova T.V., Savinkova L.K., Kolchanov N.A. TATA box polymorphisms in genes of commercial and laboratory animals and plants associated with selectively valuable traits. Genetika = Genetics (Moskow). 2010;46(4):448-457.

36. Trovato G.M. Sustainable medical research by effective and comprehensive medical skills: overcoming the frontiers by predictive, preventive and personalized medicine. EPMA J. 2014;5(1):14. DOI 10.1186/1878-5085-5-14

37. Wang X., Collins H.L., Ranalletta M., Fuki I.V., Billheimer J.T., Rothblat G.H., Tall A.R., Rader D.J. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 2007;117(8):2216-2224.

38. Welter D., MacArthur J., Morales J., Burdett T., Hall P., Junkins H., Klemm A., Flicek P., Manolio T., Hindorff L., Parkinson H. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucl. Acids Res. 2014;42(Database issue):D1001- D1006. DOI 10.1093/nar/gkt1229

39. Ye D., Hoekstra M., Out R., Meurs I., Kruijt J.K., Hildebrand R.B., Van Berkel T.J.C., Van Eck M. Hepatic cell-specific ATP-binding cassette (ABC) transporter profiling identifies putative novel candidates for lipid homeostasis in mice. Atherosclerosis. 2008;196(2):650-658.

40. Yoo S.S., Jin C., Jung D., Choi Y., Choi J.E., Lee W.K., Lee S.Y., Lee J., Cha S.I., Kim C.H., Seok Y., Lee E., Park J.Y. Putative functional variants of XRCC1 identified by RegulomeDB were not associated with lung cancer risk in a Korean population. Cancer Genet. 2015;208(1/2):19-24. DOI 10.1016/j.cancergen.2014.11.004


Review

Views: 710


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)