Биомедицинские и кандидатные SN P-маркеры для хронопатологий могут достоверно изменять сродство ТАТА -связывающего белка к промоторам генов человека


https://doi.org/10.18699/VJ15.083

Полный текст:


Аннотация

Компьютерный анализ миллионов неаннотированных SNPs (Single Nucleotide Polymorphisms) из проекта «1 000 геномов» может ускорить поиск биомедицинских SNP-маркеров. Анализ при помощи Web-сервиса SNP_ TATA_Comparator SNPs сайтов связывания ТАТА -связывающего белка (ТВР) сочетали с поиском хронопатологий по ключевым словам так, чтобы биохимические маркеры хронопатологий соответствовали изменениям экспрессии генов, содержащих эти SNPs. Для промоторов 14 генов человека в районе [– 70; – 20] (район доказанных сайтов связывания ТВР) были найдены биомедицинские и кандидатные SNP-маркеры нарушений циркадного ритма, которые могут достоверно (Z-тест) изменять сродство ТВР к этим промоторам. В их числе: rs17231520, rs569033466 (хронопатологии печени); rs35036378 (хронопатология поведенческой активности); rs549858786 (хронопатология экспрессии IL1B при ревматоидном артрите); rs563207167, rs11557611, rs5505 (хронопатологии баланса «опухоль – хозяин», кровяного давления и репродуктивной системы); rs1143627 (циркадность диагностики и терапии биполярного расстройства); rs16887226, rs544850971 (неустойчивость к эндотоксинам из- за дисбаланса циркадной и иммунной систем); rs367732974, rs549591993 (циркадность обострений сердечной недостаточности); rs563763767 (циркадность случаев инфаркта миокарда); rs2276109, rs572527200 (циркадность приступов астмы); rs34223104, rs563558831 и rs10168 (циркадные оптимумы терапии метотрексатом и циклофосфамидом); rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, rs34166473 (циркадность синдрома беспокойных ног и нейросенсорной тугоухости). Проверка этих 32 SNP-маркеров по медицинским стандартам может способствовать предиктивно-превентивной персонифицированной медицине.


Об авторах

Д. А. Рассказов
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Н. Л. Подколодный
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия Федеральное государственное бюджетное учреждение науки Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет», Новосибирск, Россия
Россия


О. Л. Подколодная
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Н. Н. Подколодная
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет», Новосибирск, Россия
Россия


В. В. Суслов
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Л. К. Савинкова
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


П. М. Пономаренко
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


М. П. Пономаренко
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет», Новосибирск, Россия
Россия


Список литературы

1. Аркова О.В., Кузнецов Н.А., Федорова О.С., Колчанов Н.А., Савинкова Л.К. Взаимодействие ТВР с ТАТА-боксом промотора гена триозофосфатизомеразы человека в норме и при патологии, определенное в режиме реального времени. Acta Naturae. 2014;6(2):40-44.

2. Подколодная О.А., Подколодный Н.Л. Полиморфизмы генов циркадных часов (ПМ ГЦЧ). А. с. № 20133621533. М.: РОСПАТЕНТ РФ, 2013.

3. Пономаренко П.М., Пономаренко М.П., Драчкова И.А., Лысова М. В., Аршинова Т.В., Савинкова Л.К., Колчанов Н.А. Прогноз изменения аффинности ТАТА-связывающего белка к ТАТА-боксам в результате полиморфизмов ТАТА-боксов промоторов генов человека. Молекуляр. биология. 2009;43(3):512-520.

4. Рассказов Д.А., Гунбин К.В., Пономаренко П.М., Вишневский О.В., Пономаренко М.П., Афонников Д.А. SNP_TATA_Comparator: Web-сервис для сравнения SNPs внутри промоторов генов, ассоциированных с заболеваниями человека, с использованием уравнения равновесного связывания комплекса ТВР/ТАТА. Вавиловский журнал генетики и селекции. 2013;17(4/1):599-606.

5. Савинкова Л.К., Пономаренко М.П., Пономаренко П.М., Драчкова И.А., Лысова М.В., Аршинова Т.В., Колчанов Н.А. Полиморфизмы ТАТА-боксов промоторов генов человека и ассоциированные с ними наследственные патологии. Биохимия. 2009;74(2):149-163.

6. Стародубцева Н.Л., Соболев В.В., Соболева А.Г., Николаев А.А., Брускин С.А. Экспрессия генов металлопротеаз (ММР 1, ММР 2, ММР 9, ММР 12) при псориазе. Генетика. 2011;47(9):1254-1261.

7. Abbas A., Lechevrel M., Sichel F. Identification of new single nucleotid polymorphisms (SNP) in alcohol dehydrogenase class IV ADH7 gene within a French population. Arch. Toxicol. 2006;80(4):201-205. DOI 10.1007/s00204-005-0031-7

8. Al-Shakfa F., Dulucq S., Brukner I., Milacic I., Ansari M., Beaulieu P., Moghrabi A., Laverdiere C., Sallan S., Silverman L.B., Neuberg D., Kutok J.L., Sinnett D., Krajinovic M. DNA variants in region for noncoding interfering transcript of dihydrofolate reductase gene and outcome in childhood acute lymphoblastic leukemia. Clin. Cancer Res. 2009;15(22):6931-6938. DOI 10.1158/1078-0432.CCR-09-0641

9. Arnaud E., Barbalat V., Nicaud V., Cambien F., Evans A., Morrison C., Arveiler D., Luc G., Ruidavets J.B., Emmerich J., Fiessinger J.N., Aiach M. Polymorphisms in the 5’ regulatory region of the tissue factor gene and the risk of myocardial infarction and venous thromboembolism: the ECTIM and PATHROS studies. Etude Cas-Temoins de l’Infarctus du Myocarde. Paris Thrombosis case-control Study. Arterioscler. Thromb. Vasc. Biol. 2000;20(3):892-898.

10. Ávila Moraes C., Cambras T., Diez-Noguera A., Schimitt R., Dantas G., Levandovski R., Hidalgo M.P. A new chronobiological approach to discriminate between acute and chronic depression using peripheral temperature, rest-activity, and light exposure parameters. BMC Psychiatry. 2013;13:77. DOI 10.1186/1471-244X-13-77

11. Bannerman R.M., Garrick L.M., Rusnak-Smalley P., Hoke J.E., Edwards J.A. Hemoglobin deficit: an inherited hypochromic anemia in the mouse. Proc. Soc. Exp. Biol. Med. 1986;182(1):52-57.

12. Bianchi S., Bigazzi R., Nenci R., Campese V. Hyperinsulinemia, circadian variation of blood pressure and end-organ damage in hypertension. J. Nephrol. 1997;10(6):325-333.

13. Binkhorst L., Kloth J.S., de Wit A.S., de Bruijn P., Lam M.H., Chaves I., Burger H., van Alphen R.J., Hamberg P., van Schaik R. H., JagerA., Koch B.C., Wiemer E.A., van Gelder T., van der Horst G.T., Mathijssen R.H. Circadian variation in tamoxifen pharmacokinetics in mice and breast cancer patients. Breast Cancer Res. Treat. 2015;152(1):119-128. DOI 10.1007/s10549-015-3452-x

14. Blask D., Dauchy R., Dauchy E., Mao L., Hill S.M., Greene M.W., Belancio V.P., Sauer L.A., Davidson L. Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention. PLoS One. 2014;9(8):e102776. DOI 10.1371/journal.pone.0102776

15. Borkowska P., Kucia K., Rzezniczek S., Paul-Samojedny M., Kowalczyk M., Owczarek A., Suchanek R., Medrala T., Kowalski J. In terleukin-1beta promoter (-31T/C and –511C/T) polymorphisms in major recurrent depression. J. Mol. Neurosci. 2011;44(1);12-16. DOI 10.1007/s12031-011-9507-5

16. Carter C.J. Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability. Neurochem. Int. 2007;50(3):461-490. DOI 10.1016/j.neuint.2006.11.009

17. Carvalho de Sousa J., Bruckert E., Giral P., Soria C., Chapman J., Truffert J., Dairou F., De Gennes J.L., Caen J.P. Coagulation factor VII and plasma triglycerides. Decreased catabolism as a possible mechanism of factor VII hyperactivity. Haemostasis. 1989;19(3):125-130.

18. Casal A., Sinclair V., Capponi A.M., Nicod J., Huynh-Do U., Ferrari P. A novel mutation in the steroidogenic acute regulatory protein gene promoter leading to reduced promoter activity. J. Mol. Endocrinol. ;37(1):71-80. DOI 10.1677/jme.1.02082

19. Cash E., Sephton S.E., Chagpar A.B., Spiegel D., Rebholz W.N., Zimmaro L.A., Tillie J.M., Dhabhar F.S. Circadian disruption and biomarkers of tumor progression in breast cancer patients awaiting surgery. Brain Behav. Immun. 2015;48:102-114. DOI 10.1016/ j.bbi.2015.02.017

20. Chen C.Y., Chang I.S., Hsiung C.A., Wasserman W.W. On the identification of potential regulatory variants within genome wide association candidate SNP sets. BMC Med. Genomics. 2014;11(7):34. DOI 10.1186/1755-8794-7-34

21. Chikanza I.C., Petrou P., Kingsley G., Chrousos G., Panayi G.S. Defective hypothalamic response to immune and inflammatory stimuli in patients with rheumatoid arthritis. Arthritis Rheum. 1992;35(11):-1288.

22. Choukrallah M.A., Kobi D., Martianov I., Pijnappel W.W., Mischerikow N., Ye T., Heck A.J., Timmers H.T., Davidson I. Interconversion between active and inactive TATA-binding protein transcription complexes in the mouse genome. Nucl. Acids Res. 2012;40(4): -1459. DOI 10.1093/nar/gkr802

23. Clark I., Rockett K.A., Burgner D. Genes, nitric oxide and malaria in African children. Trends Parasitol. 2003;19(8):335-337. DOI 1016/S1471-4922(03)00147-8

24. Colognesi I., Pasquali V., Foa A., Renzi P., Bernardi F., Bertolucci C., Pinotti M. Temporal variations of coagulation factor VII activity in mice are influenced by lighting regime. Chronobiol. Int. 2007;24: -313. DOI 10.1080/07420520701282307

25. Delaneau O., Marchini J.; 1000 Genomes Project Consortium. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat. Commun. 2014;5:3934. DOI 10.1038/ncomms4934

26. Drachkova I., Savinkova L., Arshinova T., Ponomarenko M., Peltek S., Kolchanov N. The mechanism by which TATA-box polymorphisms associated with human hereditary diseases influence interactions with the TATA-binding protein. Hum. Mutat. 2014;35(5):601-608. DOI 10.1002/humu.22535.

27. Durrington H.J., Farrow S.N., Loudon A.S., Ray D.W. The circadian clock and asthma. Thorax. 2014;69(1):90-92. DOI 10.1136/thoraxjnl--203482

28. Eckel-Mahan K., Sassone-Corsi P. Epigenetic regulation of the molecular clockwork. Prog. Mol. Biol. Transl. Sci. 2013;119:29-50. DOI 10.1016/B978-0-12-396971-2.00002-6

29. El-Omar E.M., Carrington M., Chow W.H., McColl K.E., Bream J.H., Young H.A., Herrera J., Lissowska J., Yuan C.C., Rothman N., Lanyon G., Martin M., Fraumeni J.F. Jr, Rabkin C.S. Interleukin-polymorphisms associated with increased risk of gastric cancer. Nature. ;404(6776):398-402. DOI 10.1038/35006081

30. Frankish A., Uszczynska B., Ritchie G.R., Gonzalez J.M., Pervouchine D., Petryszak R., Mudge J., J. Comparison of GENCODE and RefSeq gene annotation and the impact of reference geneset on variant effect prediction. BMC Genomics. ;16(Suppl. 8):S2. DOI 10.1186/1471-2164-16-S8-S2

31. Gabas-Rivera C., Martinez-Beamonte R., Rios J.L., Navarro M.A., Surra J.C., Arnal C., Rodriguez-Yoldi M., Osada J. Dietary oleanolic acid mediates circadian clock gene expression in liver independently of diet and animal model but requires apolipoprotein A1. J. Nutr. Biochem. 2013;24:2100-2109. DOI 10.1016/j.jnutbio.2013.07.010

32. Gonzalez-Martinez J.A., Moddel G., Ying Z., Prayson R.A., Bingaman W.E., Najm I.M. Neuronal nitric oxide synthase expression in resected epileptic dysplastic neocortex. J. Neurosurg. 2009;110(2): -349. DOI 10.3171/2008.6.17608

33. Gorbacheva V., Kondratov R.V., Zhang R., Cherukuri S., Gudkov A.V., Takahashi J.S., Antoch M.P. Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc.Natl Acad. Sci. USA. 2005;102(10):3407-3412. DOI 10.1073/pnas.0409897102

34. Haeussler M., Raney B.J., Hinrichs A.S., Clawson H., Zweig A.S., Karolchik D., Casper J., Speir M.L., Haussler D., Kent W.J. Navigating protected genomics data with UCSC Genome Browser in a box. Bioinformatics. 2015;31(5):764-766. DOI 10.1093/bioinformatics/ btu712

35. Haus E. Chronobiology of hemostasis and inferences for the chronotherapy of coagulation disorders and thrombosis prevention. Adv. Drug Deliv. Rev. 2007;59(9/10):966-984. DOI 10.1016/j.addr.2006.11.002

36. Hayashi F., Watanabe M., Nanba T., Inoue N., Akamizu T., Iwatani.Association of the -31C/T functional polymorphism in the interleukin-beta gene with the intractability of Graves’ disease and the proportion of T helper type 17 cells. Clin. Exp. Immunol. 2009;158(3): -286. DOI 10.1111/j.1365-2249.2009.04034.x

37. Hirayama S., Soda S., Ito Y., Matsui H., Ueno T., Fukushima Y., Ohmura H., Hanyu O., Aizawa

38. concentration of small dense LDL-cholesterol in type 2 diabetic patients. Clin. Chim. Acta. 2010;411(3/4):253-257. DOI 10.1016/j.cca. 2009.11.017

39. Hofstra W.A., de Weerd A.W. The circadian rhythm and its interaction with human epilepsy: a review of literature. Sleep Med. Rev. ;13(6)413-420. DOI 10.1016/j.smrv.2009.01.002

40. Hunninghake G.M., Cho M.H., Tesfaigzi Y., Soto-Quiros M.E., Avila L., Lasky-Su J., Stidley C., Melen E., Soderhall C., Hallberg J., Kull I., Kere J., Svartengren M., Pershagen G., Wickman M., Lange C., Demeo D.L., Hersh C.P., Klanderman B.J., Raby B.A., Sparrow D., Shapiro S.D., Silverman E.K., Litonjua A.A., Weiss S. T., Celedon J.C. MMP12, lung function, and COPD in high-risk populations. N. Engl. J. Med. 2009;361(27):2599-2608. DOI 10.1056/ NEJMoa0904006

41. Kavlie A., Hiltunen L., Rasi V., Prydz H. Two novel mutations in the human coagulation factor VII promoter. Thromb. Haemost. 2003; (2):194-205. DOI 10.1160/TH02-09-0050

42. Kaya B., Unal S., Karabulut A.B., Turkoz Y. Altered diurnal variation of nitric oxide production in patients with panic disorder. Tohoku J. Exp. Med. 2004;204(2):147-154. DOI 10.1620/tjem.204.147

43. Kouri V.P., Olkkonen J., Kaivosoja E., Ainola M., Juhila J., Hovatta I., Konttinen Y.T., Mandelin J. Circadian timekeeping is disturbed in rheumatoid arthritis at molecular level. PLoS One. 2013;8(1): e54049. DOI 10.1371/journal.pone.0054049

44. Laughlin G.A., Dominguez C.E., Yen S.S. Nutritional and endocrinemetabolic aberrations in women with functional hypothalamic amenorrhea. J. Clin. Endocrinol. Metab. 1998;83(1):25-32. DOI http://dx.doi.org/10.1210/jcem.83.1.4502

45. Manetti M., Ibba-Manneschi L., Fatini C., Guiducci S., Cuomo G., Bonino C., Bazzichi L., Liakouli V., Giacomelli R., Abbate R., Bombardieri S., Montecucco C., Valentini G., Matucci-Cerinic M. Association of a functional polymorphism in the matrix metalloproteinase- promoter region with systemic sclerosis in an Italian population. J. Rheumatol. 2010;37(9):1852-1857. DOI 10.3899/jrheum. 100237

46. Marckmann P., Sandstrom B., Jespersen J. Dietary effects on circadian fluctuation in human blood coagulation factor VII and fibrinolysis. Atherosclerosis. 1993;101(2):225-234. DOI 10.1016/0021-(93)90119-F

47. Martianov I., Viville S., Davidson I. RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science. ;298(5595):1036-1039. DOI 10.1126/science.1076327

48. Martinez-Carrillo D.N., Garza-Gonzalez E., Betancourt-Linares R., Monico-Manzano T., Antunez-Rivera C., Roman-Roman A., Flores-Alfaro E., Illades-Aguiar B., Fernandez-Tilapa G. Association of IL1B -511C/-31T haplotype and Helicobacter pylori vacA genotypes with gastric ulcer and chronic gastritis. BMC Gastroenterol. ;10:126. DOI 10.1186/1471-230X-10-126

49. Matsunaga A., Sasaki J., Han H., Huang W., Kugi M., Koga T., Ichiki S., Shinkawa T., Arakawa K. Compound heterozygosity for an apolipoprotein A1 gene promoter mutation and a structural nonsense mutation with apolipoprotein A1 deficiency. Arterioscler. Thromb. Vasc. Biol. 1999;19(2):348-355. DOI 10.1161/01.ATV.19.2.348

50. Mereness A.L., Murphy Z.C., Sellix M.T. Developmental programming by androgen affects the circadian timing system in female mice. Biol. Reprod. 2015;92(4):88. DOI 10.1095/biolreprod.114.126409

51. Mogno I., Vallania F., Mitra R., Cohen B. TATA is a modular component of synthetic promoters. Genome Res. 2010;20(10):1391-1397. DOI 10.1101/gr.106732.110

52. Mullegama S.V., Pugliesi L., Burns B., Shah Z., Tahir R., Gu Y., Nelson D.L., Elsea S.H. MBD5 haploinsuf ficiency is associated with sleep disturbance and disrupts circadian pathways common to Smith-Magenis and fragile X syndromes. Eur. J. Hum. Genet. ;23(6): 781-789. DOI 10.1038/ejhg.2014.200

53. Ohdo S., Inoue K., Yukawa E., Higuchi S., Nakano S., Ogawa N. Chronotoxicity of methotrexate in mice and its relation to circadian rhythm of DNA synthesis and pharmacokinetics. Jpn. J. Pharmacol. ;75(3):283-290. DOI 10.1254/jjp.75.283

54. Oishi K., Koyanagi S., Ohkura N. Circadian mRNA expression of coagulation and fibrinolytic factors is organ-dependently disrupted in aged mice. Exp. Gerontol. 2011;46(12):994-999. DOI 10.1016/j.exger.2011.09.003

55. Oka K., Belalcazar L.M., Dieker C., Nour E.A., Nuno-Gonzalez P., Paul A., Cormier S., Shin J.K., correction in a mouse model of hypoalphalipoproteinemia with a helper-dependent adenovirus vector. Gene Ther. 2007;14(3):-202. DOI 10.1038/sj.gt.3302819

56. Padmanabhan K., Robles M.S., Westerling T., Weitz C.J. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science. 2012;337(6094)599-602. DOI 10.1126/science.1221592

57. Philips S., Richter A., Oesterreich S., Rae J.M., Flockhart D.A., Perumal N.B., Skaar T.C. Functional characterization of a genetic polymorphism in the promoter of the ESR2 gene. Horm. Cancer. ;3(1/2):37-43. DOI 10.1007/s12672-011-0086-2

58. Pivovarova O., Jurchott K., Rudovich N., Hornemann S., Ye L., Mockel S., Murahovschi V., Kessler K., Seltmann A.C., Maser-Gluth C., Mazuch J., Kruse M., Busjahn A., Kramer A., Pfeiffer A.F. Changes of dietary fat and carbohydrate content alter central and peripheral clock in humans. J. Clin. Endocrinol. Metab. 2015;100(6):2291- DOI 10.1210/jc.2014-3868

59. Plengpanich W., Le Goff W., Poolsuk S., Julia Z., Guerin M., Khovidhunkit W. CETP deficiency due to a novel mutation in the CETP gene promoter and its effect on cholesterol efflux and selective uptake into hepatocytes. Atherosclerosis. 2011;216(2):370-373. DOI 1016/j.atherosclerosis.2011.01.051

60. Ponomarenko M., Rasskazov D., Arkova O., Ponomarenko P., Suslov V., Savinkova L., Kolchanov N.A. How to use SNP_TATA_Comparator to find a significant change in gene expression caused by the regulatory SNP of this gene’s promoter via a change in affinity of the TATA-binding protein for this promoter. Biomed. Res. Int. ;359835. DOI 10.1155/2015/359835

61. Royston S., Yasui N., Kondilis A.G., Lord S.V., Katzenellenbogen A., Mahoney M.M. ESR1 and ESR2 differentially regulate daily and circadian activity rhythms in female mice. Endocrinology. ;155(7):2613-2623. DOI 10.1210/en.2014-1101

62. Savinkova L.K., Drachkova I.A., Arshinova T.V., Ponomarenko P.M., Ponomarenko M.P., Kolchanov N.A. An experimental verification of the predicted effects of promoter TATA-box polymorphisms associated with human diseases on interactions between the TATA boxes and TATA-binding protein. PLoS One. 2013;8(2):e54626. DOI 10.1371/journal.pone.0054626

63. Sherry S.T., Ward M.H., Kholodov M., Baker J., Phan L., Smigielski E. M., Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucl. Acids Res. 2001;29(1):308-311. DOI 10.1093/nar/29.1.308

64. Sieuwerts A.M., Ansems M., Look M.P., Span P.N., de Weerd V., van Galen A., Foekens J.A., Adema G.J., Martens J.W. Clinical significance of the nuclear receptor co-regulator DC-SCRIPT in breast cancer: an independent retrospective validation study. Breast Cancer Res. 2010;12(6):R103. DOI 10.1186/bcr2786

65. Sun A.H., Wang Z.M., Xiao S.Z., Li Z.J., Li J.Y., Kong L.S. Red cell basic ferritin concentration in sensorineural hearing loss. ORL J. Otorhinolaryngol. Relat. Spec. 1991;53(5):270-272.

66. Tang J.Q., Fan Q., Wan Y.L., Liu Y.C., Wang X., Wu T., Pan Y.S., Wu W. H., Zhu J. Ectopic expression and clinical significance of tissue factor/coagulation factor VII complex in colorectal cancer. Beijing Da Xue Xue Bao. 2009;41(5):531-536. DOI 10.3969/ j.issn.1671-167x.2009.05.005

67. Thio D., Prasad V., Anslow P., Lennox P. Marrow proliferation as a cause of hearing loss in beta-thalassaemia major. J. Laryngol. Otol. ;122(11):1253-1256. DOI 10.1017/S0022215107000874

68. Unger E.L., Earley C.J., Beard J.L. Diurnal cycle influences peripheral and brain iron levels in mice. J. Appl. Physiol. (1985). 2009;106(1): -193. DOI 10.1152/japplphysiol.91076.2008

69. Waardenberg A.J., Basset S.D., Bouveret R., Harvey R.P. CompGO: an R package for comparing and visualizing Gene Ontology enrichment differences between DNA binding experiments. BMC Bioinformatics. ;16(1):275. DOI 10.1186/s12859-015-0701-2

70. Wang Y., Kato N., Hoshida Y., Yoshida H., Taniguchi H., Goto T., Moriyama M., Otsuka M., Shiina S., Shiratori Y., Ito Y., Omata M. Interleukin-1beta gene polymorphisms associated with hepatocellular carcinoma in hepatitis C virus infection. Hepatology. 2003;37(1): -71. DOI 10.1053/jhep.2003.50017

71. Wang J., Luo Y., Wang K., Wang Y., Zhang X., Teng H., Sun Z. Clockcontrolled StAR’s expression and corticosterone production contribute to the endotoxemia immune response. Chronobiol. Int. 2015;(3):358-367. DOI 10.3109/07420528.2014.982284

72. Wu Y., Zhou J., Van Heerikhuize J., Jockers R., Swaab D. Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol. Aging. 2007;28(8):1239-DOI 10.1016/j.neurobiolaging.2006.06.002

73. Wu K., Zhou X., Zheng F., Xu X., Lin Y., Yang J. Influence of interleukin-beta genetic polymorphism, smoking and alcohol drinking on the risk of non-small cell lung cancer. Clin. Chim. Acta. ;411(19/20):1441-1446. DOI 10.1016/j.cca.2010.05.035

74. Yamazaki H., Takeoka M., Kitazawa M., Ehara T., Itano N., Kato H., Taniguchi S. ASC plays a role in the priming phase of the immune response to type II collagen in collagen-induced arthritis. Rheumatol. Int. 2012;32(6):1625-1632. DOI 10.1007/s00296-011-1825-y

75. Yang M., Laflamme K., Gotea V., Joiner C.H., Seidel N.E., Wong C., Petrykowska H.M., Lichtenberg J., Lee S., Welch L., Gallagher P. G., Bodine D.M., Elnitski L. Genome-wide detection of a TFIID localization element from an initial human disease mutation. Nucl. Acids Res. 2011;39(6):2175-2187. DOI 10.1093/nar/gkq1035

76. Yoo S.S., Jin C., Jung D.K., Choi Y.Y., Choi J.E., Lee W.K., Lee S.Y., Lee J., Cha S.I., Kim C.H., Seok Y., Lee E., Park J.Y. Putative functional variants of XRCC1 identified by RegulomeDB were not associated with lung cancer risk in a Korean population. Cancer Genet. ;208(1/2):19-24. DOI 10.1016/j.cancergen.2014.11.004

77. Zerbino D.R., Wilder S.P., Johnson N., Juettemann T., Flicek P.R. The Ensembl regulatory build. Genome Biol. 2015;16:56. DOI 10.1186/s13059-015-0621-5

78. Zhang R., Lahens N.F., Ballance H.I., Hughes M.E., Hogenesch J.B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA. 2014;111(45):16219-DOI 10.1073/pnas.1408886111

79. Zukunft J., Lang T., Richter T., Hirsch-Ernst K.I., Nussler A.K., KleinK., Schwab M., Eichelbaum M., Zanger U.M. A natural CY P2B6 TATA box polymorphism (–82T → C) leading to enhanced transcription and relocation of the transcriptional start site. Mol. Pharmacol. 2005;67(5):1772-1782. DOI 10.1124/mol.104.008086


Дополнительные файлы

Просмотров: 208

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)