Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Программа PlantReg 1.1: анализ взаимного расположения сайтов связывания транскрипционных факторов в промоторах генов-мишеней для уточнения молекулярных механизмов их активности в регуляторных сетях

https://doi.org/10.18699/vjgb-25-100

Аннотация

   Развитие высокопроизводительного секвенирования расширило возможности изучения регуляции экспрессии генов, в том числе для реконструкции генных регуляторных сетей и регуляторных сетей транскрипционных факторов (РСТФ). Актуальной задачей остается выявление молекулярных аспектов регуляции данными сетями биологических процессов. Решение этой задачи для растений позволит существенно продвинуться в понимании механизмов формирования хозяйственно важных признаков. Ранее мы разработали программу PlantReg для реконструкции транскрипционной регуляции биологических процессов у модельного вида Arabidopsis thaliana L. Воспроизводимые этой программой связи между РСТФ и генами, обеспечивающими протекание биологических процессов, охарактеризованы по типу регуляции (активация/подавление). Однако программа не позволяла определять, в каких случаях активация/подавление экспрессии гена-мишени обусловлены кооперативным или конкурентным взаимодействием транскрипционных факторов (ТФ). Мы предложили использовать информацию о взаимном расположении сайтов связывания (СС) ТФ в промоторе гена-мишени, а также данные о типе активности трансактивационных доменов ТФ для выявления кооперативного/конкурентного действия ТФ. Мы усовершенствовали программу, создав версию PlantReg 1.1, где обеспечили возможность точной локализации СС ТФ в протяженных районах связывания ТФ, устанавливаемых на основании полногеномных профилей DAP-seq (https://plamorph.sysbio.ru/fannotf/). Для демонстрации возможностей программы была исследована регуляция генов-мишеней ранее реконструированных нами РСТФ ответа на ауксин и солевой стресс у A. thaliana. В фокусе изучения были гены, кодирующие белки, участвующие в процессах биосинтеза хлорофилла и лигнина, биогенеза рибосом и в передаче сигнала абсцизовой кислоты. В данной работе установлено, что частота случаев конкурентной регуляции под влиянием ауксина и солевого стресса может быть достаточно высока (около 30 %). Показано, что конкуренция ТФ семейства bZIP за общие СС является значимым механизмом подавления транскрипции в ответ на ауксин, и что ауксин и солевой стресс могут задействовать общие механизмы конкурентной регуляции для модуляции экспрессии некоторых генов сигнального пути абсцизовой кислоты.

Об авторах

В. В. Лавреха
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



Н. А. Омельянчук
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



А. Г. Богомолов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Ю. А. Рябов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



П. К. Мукебенова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



Е. В. Землянская
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



Список литературы

1. Ahn J.H., Miller D., Winter V.J., Banfield M.J., Jeong H.L., So Y.Y., Henz S.R., Brady R.L., Weigel D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 2006;25(3):605-614. doi: 10.1038/sj.emboj.7600950

2. Alonso R., Oñate-Sánehez L., Weltmeier F., Ehlert A., Diaz I., Dietrich K., Vicente-Carbajosa J., Dröge-Laser W. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell. 2009;21(6): 1747-1761. doi: 10.1105/tpc.108.062968

3. Bailey T.L. STREME: accurate and versatile sequence motif discovery. Bioinformatics. 2021;37(18):2834-2840. doi: 10.1093/bioinformatics/btab203

4. Berlow R.B., Dyson H.J., Wright P.E. Hypersensitive termination of the hypoxic response by a disordered protein switch. Nature. 2017; 543(7645):447-451. doi: 10.1038/nature21705

5. Blanc-Mathieu R., Dumas R., Turchi L., Lucas J., Parcy F. Plant-TFClass: a structural classification for plant transcription factors. Trends Plant Sci. 2024;29(1):40-51. doi: 10.1016/j.tplants.2023.06.023

6. Boyle P., Després C. Dual-function transcription factors and their entourage: unique and unifying themes governing two pathogenesis-related genes. Plant Signal Behav. 2010;5(6):629-634. doi: 10.4161/psb.5.6.11570

7. Brackmann K., Qi J., Gebert M., Jouannet V., Schlamp T., Grünwald K., Wallner E.-S., Novikova D.D., Levitsky V.G., Agustí J., Sanchez P., Lohmann J.U., Greb T. Spatial specificity of auxin responses coordinates wood formation. Nat Commun. 2018;9(1):875. doi: 10.1038/s41467-018-03256-2

8. Cheng C.Y., Krishnakumar V., Chan A.P., Thibaud-Nissen F., Schobel S., Town C.D. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017;89(4):789-804. doi: 10.1111/tpj.13415

9. Chupreta S., Brevig H., Bai L., Merchant J.L., Iñiguez-Lluhí J.A. Sumoylation-dependent control of homotypic and heterotypic synergy by the Krüppel-type zinc finger protein ZBP-89. J Biol Chem. 2007;282(50):36155-36166. doi: 10.1074/jbc.M708130200

10. De Rybel B., Audenaert D., Xuan W., Overvoorde P., Strader L.C., Kepinski S., Hoye R., Brisbois R., Parizot B., Vanneste S., Liu X. A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nat Chem Biol. 2012;8(9):798-805. doi: 10.1038/nchembio.1044

11. Deshpande D., Chhugani K., Chang Y., Karlsberg A., Loeffler C., Zhang J., Muszyńska A., … Eskin E., Zhao F., Mohammadi P., Łabaj P., Mangul S. RNA-seq data science: from raw data to effective interpretation. Front Genet. 2023;14:997383. doi: 10.3389/fgene.2023.997383

12. Dhatterwal P., Sharma N., Prasad M. Decoding the functionality of plant transcription factors. J Exp Bot. 2024;75(16):4745-4759. doi: 10.1093/jxb/erae231

13. Foster R., Izawa T., Chua N.H. Plant bZIP proteins gather at ACGT elements. FASEB J. 1994;8(2):192-200. doi: 10.1096/fasebj.8.2.8119490

14. Gupta S., Stamatoyannopoulos J.A., Bailey T.L., Noble W.S. Quantifying similarity between motifs. Genome Biol. 2007;8(2):R24. doi: 10.1186/gb-2007-8-2-r24

15. Hanna-Rose W., Hansen U. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet. 1996;12(6):229-234. doi: 10.1016/0168-9525(96)10022-6

16. Huang W., Quan M., Qi W., Xiao L., Fang Y., Zhou J., Ren T., Li P., Chen Y., El-Kassaby Y.A., Du F., Zhang D. Phylostratigraphic analysis revealed that ancient ohnologue PtoWRKY53 innovated a vascular transcription regulatory network in Populus. New Phytol. 2025;248:2295-2315. doi: 10.1111/nph.70403

17. Hummel N.F.C., Zhou A., Li B., Markel K., Ornelas I.J., Shih P.M. The trans-regulatory landscape of gene networks in plants. Cell Syst. 2023;14(6):501-511.e4. doi: 10.1016/j.cels.2023.05.002

18. Ko D.K., Brandizzi F. Network‐based approaches for understanding gene regulation and function in plants. Plant J. 2020;104(2):302-317. doi: 10.1111/tpj.14940

19. Ko D.K., Brandizzi F. Transcriptional competition shapes proteotoxic ER stress resolution. Nat Plants. 2022;8(5):481-490. doi: 10.1038/s41477-022-01150-w

20. Lamesch P., Berardini T.Z., Li D., Swarbreck D., Wilks C., Sasidharan R., Muller R., … Nelson W.D., Ploetz L., Singh S., Wensel A., Huala E. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012;40(D1): D1202-D1210. doi: 10.1093/nar/gkr1090

21. Lavrekha V.V., Levitsky V.G., Tsukanov A.V., Bogomolov A.G., Grigorovich D.A., Omelyanchuk N., Ubogoeva E.V., Zemlyanskaya E.V., Mironova V. CisCross: a gene list enrichment analysis to predict upstream regulators in Arabidopsis thaliana. Front Plant Sci. 2022;13: 942710. doi: 10.3389/fpls.2022.942710

22. Lavrekha V.V., Omelyanchuk N.A., Bogomolov A.G., Zemlyanskaya E.V. PlantReg: the reconstruction of links between transcription factor regulatory networks and biological processes under their control. Vavilov J Genet Breed. 2024;28(8):950-959. doi: 10.18699/vjgb-24-102

23. Leong R., He X., Beijen B.S., Sakai T., Goncalves J., Ding P. Unlocking gene regulatory networks for crop resilience and sustainable agriculture. Nat Biotechnol. 2025;43(8):1254-1265. doi: 10.1038/s41587-025-02727-4

24. Marshall-Colón A., Kliebenstein D.J. Plant networks as traits and hypotheses: moving beyond description. Trends Plant Sci. 2019;24(9): 840-852. doi: 10.1016/j.tplants.2019.06.003

25. Martínez C., Espinosa-Ruíz A., de Lucas M., Bernardo-García S., Franco-Zorrilla J.M., Prat S. PIF 4‐induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J. 2018;37(23): e99552. doi: 10.15252/embj.201899552

26. Nagahage I.S.P., Sakamoto S., Nagano M., Ishikawa T., Kawai-Yamada M., Mitsuda N., Yamaguchi M. An NAC domain transcription factor ATAF2 acts as transcriptional activator or repressor dependent on promoter context. Plant Biotechnol. 2018;35(3):285-289. doi: 10.5511/plantbiotechnology.18.0507a

27. O’Malley R.C., Huang S.C., Song L., Lewsey M.G., Bartlett A., Nery J.R., Galli M., Gallavotti A., Ecker J.R. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell. 2016; 165(5):1280-1292. doi: 10.1016/j.cell.2016.04.038

28. Omelyanchuk N.A., Lavrekha V.V., Bogomolov A.G., Dolgikh V.A., Sidorenko A.D., Zemlyanskaya E.V. Computational reconstruction of the transcription factor regulatory network induced by auxin in Arabidopsis thaliana L. Plants. 2024;13(14):1905. doi: 10.3390/plants13141905

29. Otani Y., Kawanishi M., Kamimura M., Sasaki A., Nakamura Y., Nakamura T., Okamoto S. Behavior and possible function of Arabidopsis BES1/BZR1 homolog 2 in brassinosteroid signaling. Plant Signal Behav. 2022;17(1):2084277. doi: 10.1080/15592324.2022.2084277

30. Park P.J. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10(10):669-680. doi: 10.1038/nrg2641

31. Percio F., Rubio L., Amorim-Silva V., Botella M.A. Crucial roles of brassinosteroids in cell wall composition and structure across species: new insights and biotechnological applications. Plant Cell Environ. 2025;48(3):1751-1767. doi: 10.1111/pce.15258

32. Raditsa V.V., Tsukanov A.V., Bogomolov A.G., Levitsky V.G. Genomic background sequences systematically outperform synthetic ones in de novo motif discovery for ChIP-seq data. NAR Genomics Bioinform. 2024;6(3):lqae090. doi: 10.1093/nargab/lqae090

33. Rauluseviciute I., Riudavets-Puig R., Blanc-Mathieu R., Castro-Mondragon J.A., Ferenc K., Kumar V., Lemma R.B., … Lenhard B., Sandelin A., Wasserman W.W., Parcy F., Mathelier A. JASPAR 2024: 20<sup>th</sup> anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2024;52(D1):D174-D182. doi: 10.1093/nar/gkad1059

34. Reinhold H., Soyk S., Simková K., Hostettler C., Marafino J., Mainiero S., Vaughan C.K., Monroe J.D., Zeeman S.C. β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell. 2011;23(4):1391-1403. doi: 10.1105/tpc.110.081950

35. Ren G., Cui K., Zhang Z., Zhao K. Division of labor between IRF1 and IRF2 in regulating different stages of transcriptional activation in cellular antiviral activities. Cell Biosci. 2015;5(1):17. doi: 10.1186/s13578-015-0007-0

36. Rybakov M.A., Omelyanchuk N.A., Zemlyanskaya E.V. Reconstruction of gene regulatory networks from single cell transcriptomic data. Vavilov J Genet Breed. 2024;28(8):974-981. doi: 10.18699/vjgb-24-104

37. Sánchez-Camargo V.A., Romero-Rodríguez S., Vázquez-Ramos J.M. Non-canonical functions of the E2F/DP pathway with emphasis in plants. Phyton. 2021;90(2):307-330. doi: 10.32604/phyton.2021.014967

38. Schindler U., Beckmann H., Cashmore A.R. TGA1 and G-box binding factors: two distinct classes of Arabidopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. Plant Cell. 1992;4(10):1309-1319. doi: 10.1105/tpc.4.10.1309

39. Selvaraj N., Budka J.A., Ferris M.W., Plotnik J.P., Hollenhorst P.C. Extracellular signal-regulated kinase signaling regulates the opposing roles of JUN family transcription factors at ETS/AP-1 sites and in cell migration. Mol Cell Biol. 2015;35(1):88-100. doi: 10.1128/mcb.00982-14

40. Shi H., Li X., Lv M., Li J. BES1/BZR1 family transcription factors regulate plant development via brassinosteroid-dependent and independent pathways. Int J Mol Sci. 2022;23(17):10149. doi: 10.3390/ijms231710149

41. Su K., Katebi A., Kohar V., Clauss B., Gordin D., Qin Z.S., Karuturi R.K.M., Li S., Lu M. NetAct: a computational platform to construct core transcription factor regulatory networks using gene activity. Genome Biol. 2022;23(1):270. doi: 10.1186/s13059-022-02835-3

42. Sun T., Hazra A., Lui A., Zeng S., Wang X., Rao S., Owens L.A., Fei Z., Zhao Y., Mazourek M., Giovannoni J.G., Li L. GLKs directly regulate carotenoid biosynthesis via interacting with GBFs in plants. New Phytol. 2025;246(2):645-665. doi: 10.1111/nph.20457

43. Sun Y., Li J., Huang J., Li S., Li Y., Lu B., Deng X. Architecture of genome-wide transcriptional regulatory network reveals dynamic functions and evolutionary trajectories in Pseudomonas syringae. eLife. 2025;13:RP96172. doi: 10.7554/eLife.96172.3

44. Tamura T., Sakata T., Igarashi H., Okumura K. Transcription factor HUB1 represses SP1-mediated gene expression through the CACCC box of HTLV-I U5RE but not the GC box. J Health Sci. 2004;50(4):417-422. doi: 10.1248/jhs.50.417

45. Tremblay B.J.M. universalmotif: an R package for biological motif analysis. J Open Source Software. 2024;9(100):7012. doi: 10.21105/joss.07012

46. van den Heuvel S., Dyson N.J. Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol. 2008;9(9):713-724. doi: 10.1038/nrm2469

47. Vanneste S., Pei Y., Friml J. Mechanisms of auxin action in plant growth and development. Nat Rev Mol Cell Biol. 2025;26(9):648-666. doi: 10.1038/s41580-025-00851-2

48. Veerabagu M., Kirchler T., Elgass K., Stadelhofer B., Stahl M., Harter K., Mira-Rodado V., Chaban C. The interaction of the Arabidopsis response regulator ARR18 with bZIP63 mediates the regulation of PROLINE DEHYDROGENASE expression. Mol Plant. 2014;7(10):1560-1577. doi: 10.1093/mp/ssu074

49. Wang L., Ko E.E., Tran J., Qiao H. TREE1-EIN3-mediated transcriptional repression inhibits shoot growth in response to ethylene. Proc Natl Acad Sci USA. 2020;117(46):29178-29189. doi: 10.1073/pnas.2018735117

50. Weirauch M.T., Yang A., Albu M., Cote A.G., Montenegro-Montero A., Drewe P., Najafabadi H.S., … Bouget F.Y., Ratsch G., Larrondo L.F., Ecker J.R., Hughes T.R. Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014;158(6):1431-1443. doi: 10.1016/j.cell.2014.08.009

51. Weltmeier F., Rahmani F., Ehlert A., Dietrich K., Schütze K., Wang X., Chaban C., Hanson J., Teige M., Harter K., Vicente-Carbajosa J., Smeekens S., Dröge-Laser W. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol Biol. 2009;69(1):107-119. doi: 10.1007/s11103-008-9410-9

52. Wildenhain T., Smaczniak C., Marsell A., Draken J., Maag D., Kreisz P., Krischke M., Müller M.J., Kaufmann K., Weiste C., Dröge-Laser W. A subset of group S1 bZIP transcription factors controls resource management during starvation and recovery in Arabidopsis. Plant Cell. 2025;37(7):koaf149. doi: 10.1093/plcell/koaf149

53. Wu T., Goh H., Azodi C.B., Krishnamoorthi S., Liu M.J., Urano D. Evolutionarily conserved hierarchical gene regulatory networks for plant salt stress response. Nat Plants. 2021;7(6):787-799. doi: 10.1038/s41477-021-00929-7

54. Zhang X., Li L., Fourie J., Davie J.R., Guarcello V., Diasio R.B. The role of Sp1 and Sp3 in the constitutive DPYD gene expression. Biochim Biophys Acta. 2006;1759(5):247-256. doi: 10.1016/j.bbaexp.2006.05.001

55. Zemlyanskaya E.V., Dolgikh V.A., Levitsky V.G., Mironova V. Transcriptional regulation in plants: using omics data to crack the cis-regulatory code. Curr Opin Plant Biol. 2021;63:102058. doi: 10.1016/j.pbi.2021.102058


Рецензия

Просмотров: 233

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)