Dissecting the role of single nucleotide polymorphism of lymphotoxin beta gene during pig domestication using bioinformatic and experimental approaches
https://doi.org/10.18699/VJ15.088
Abstract
Studies of wild and laboratory animals have revealed a trade-off between reproductive success and immunity. Therefore, it is likely that domestication favored selection of individuals with high reproductive performance but low immunity. The low responsiveness of the immune system could become hereditary through fixation of genes with “unfavorable” mutations in populations. The objectives of this work are: 1) determination of frequencies of genotypes and alleles of the rs340283541 SNP in the gene for the lymphotoxin beta (LTB) cytokine in pigs of domestic breeds and wild boars; 2) investigation of the expression of LTB mRNA in minipigs with different genotypes, and 3) bioinformational analysis of the putative functional role of the SNP. The frequency of the GG genotype in the wild boar sample was significantly lower than in the pooled sample of domestic pigs. The LTB mRNA expression rate in the lymph node of minipigs with genotype GG tended to increase (p < 0.06) in comparison with carriers o allele A. The rs340283541 SNP occurs in a DNA motif highly conservative among 11 mammalian species; thus, it may be of functional significance. Context analysis shows that allele A has putative binding sites for transcription factors BRN-2 and AP-1, whereas allele G has binding sites for transcription factors RFX1, ISGF3 (site ISRE), and USF expressed in cells of the immune system. Thus, pig domestication was accompanied by an increase in the frequency of the GG genotype for the rs340283541 SNP, occurring in the 3’ region of the LTB gene. It is likely that the GG genotype is associated with elevated LTB mRNA expression in the lymph node tissue. This increase may be related to the formation of binding sites for RFX1, ISRE, and USF and/or disruption of binding sites for BRN-2 and AP-1. A linkage disequilibrium between rs340283541 and another functionally significant mutation in LTB is also conceivable.
About the Authors
R. B. AitnazarovRussian Federation
E. V. Ignatieva
Russian Federation
N. E. Bazarova
Russian Federation
V. G. Levitsky
Russian Federation
S. P. Knyazev
Russian Federation
Y. Gon
Russian Federation
N. S. Yudin
Russian Federation
References
1. Aitnazarov R.B., Yudin N.S., Nikitin S.V., Ermolayev V.I., Voevoda M.I. Identication of whole genomes of endogenous retroviruses in Siberian miniature pigs. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;18(2): 294-297.
2. Ananko E.A., Kondrakhin V., Merkulova T.I., Kolchanov N.A. Recognition of interferon-inducible sites, promoters, and enhancers. BMC Bioinformatics. 2007;8:56.
3. Ardia D.R., Parmentier H.K., Vogel L.A. The role of constraints and limitation in driving individual variation in immune response. Functional Ecology. 2011;25(1):61- 73. DOI 10.1111/j.1365-2435.2010.01759.x
4. Belyaev D.K. Destabilizing selection as a factor of variability in domestication. Priroda = Nature (Moscow). 1979;2:36-45.
5. Belyaev D.K. Destabiliziruyushchiy otbor kak faktor domestikatsii [Destabilizing selection as a factor in domestication]. Genetika i blagosostoyanie chelovechestva [Genetics and the wellbeing of mankind]. Moscow, 1981:53-66.
6. Balenger S.L., Zuk M. Testing the Hamilton-Zuk hypothesis: past, present, and future. Integr Comp. Biol. 2014;54(4):601-613. DOI 10.1093/icb/icu059
7. Corre S., Galibert M.D. USF as a key regulatory element of gene expression. Med. Sci. (Paris). 2006;22(1):62-67.
8. Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188-1190.
9. Crowe P.D., VanArsdale T.L., Walter B.N., Ware C.F., Hession C., Ehrenfels B., Browning J.L., Din W.S., Goodwin R.G., Smith C.A. A lymphotoxin- beta-specific receptor. Science. 1994;264(5159):707-710.
10. Cui C.Y., Hashimoto T., Grivennikov S.I., Piao Y., Nedospasov S.A., Schlessinger D. Ectodysplasin regulates the lymphotoxin-beta pathway for hair differentiation. Proc. Natl Acad. Sci. USA. 2006; 103(24):9142-9147.
11. Djebali S., Davis C.A., Merkel A., Dobin A., Lassmann T., Mortazavi A., Tanzer A., Lagarde J., Lin W., Schlesinger F., Xue C., Marinov G.K., Khatun J., Williams B.A., Zaleski C., Rozowsky J., Röder M., Kokocinski F., Abdelhamid R.F., Alioto T., Antoshechkin I., Baer M. T., Bar N.S., Batut P., Bell K., Bell I., Chakrabortty S., Chen X., Chrast J., Curado J., Derrien T., Drenkow J., Dumais E., Dumais J., Duttagupta R., Falconnet E., Fastuca M., Fejes-Toth K., Ferreira P., Foissac S., Fullwood M.J., Gao H., Gonzalez D., Gordon A., Gunawardena H., Howald C., Jha S., Johnson R., Kapranov P., King B., Kingswood C., Luo O.J., Park E., Persaud K., Preall J.B., Ribeca P., Risk B., Robyr D., Sammeth M., Schaffer L., See L.H., Shahab A., Skancke J., Suzuki A.M., Takahashi H., Tilgner H., Trout D., Walters N., Wang H., Wrobel J., Yu Y., Ruan X., Hayashizaki Y., Harrow J., Gerstein M., Hubbard T., Reymond A., Antonarakis S.E., Hannon G., Giddings M.C., Ruan Y., Wold B., Carninci P., Guigó R., Gingeras T.R. Landscape of transcription in human cells. Nature. 2012;489(7414):101-108. DOI 10.1038/nature11233
12. Ellmann L., Joshi M.B., Resink T.J., Bosserhoff A.K., Kuphal S. BRN2 is a transcriptional repressor of CDH13 (T-cadherin) in melanoma cells. Lab Invest. 2012;92(12):1788-1800. DOI 10.1038/labinvest.2012.140
13. Fontes J.D., Jabrane-Ferrat N., Peterlin B.M. Assembly of functional regulatory complexes on MHC class II promoters in vivo. J. Mol. Biol. 1997;270(3):336-345.
14. Goodall J., Martinozzi S., Dexter T.J., Champeval D., Carreira S., Larue L., Goding C.R. Brn-2 expression controls melanoma proliferation and is directly regulated by beta-catenin. Mol. Cell Biol. 2004;24(7):2915-2922.
15. Heringstad B., Chang Y.M., Gianola D., Klemetsdal G. Genetic association between susceptibility to clinical mastitis and protein yield in norwegian dairy cattle. J. Dairy Sci. 2005;88(4):1509-1514.
16. Heringstad B., Klemetsdal G., Steine T. Selection responses for disease resistance in two selection experiments with Norwegian red cows. J. Dairy Sci. 2007;90(5):2419- 2426.
17. Hess J., Angel P., Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J. Cell Sci. 2004;117(25):5965-5973.
18. Ignatieva E.V., Podkolodnaya O.A., Orlov Y.L., Vasiliev G.V., Kolchanov N.A. Regulatory genomics: integrated experimental and computer approaches. Genetika = Genetics (Moscow). 2015;51(4): 409-429.
19. Kel-Margoulis O.V., Romashchenko A.G., Kolchanov N.A., Wingender E., Kel A.E. COMPEL: a database on composite regulatory elements providing combinatorial transcriptional regulation. Nucl. Acids Res. 2000;28(1):311-315.
20. Kessler D.S., Veals S.A., Fu X.Y., Levy D.E. Interferon-alpha regulates nuclear translocation and DNA-binding affinity of ISGF3, a multimeric transcriptional activator. Genes Dev. 1990;4(10):1753-1765.
21. Kim J.Y., Moon S.M., Ryu H.J., Kim J.J., Kim H.T., Park C., Kim K., Oh B., Lee J.K. Identification of regulatory polymorphisms in the TNF-TNF receptor superfamily. Immunogenetics. 2005;57(5): 297-303.
22. Kolchanov N.A., Ignatieva E.V., Ananko E.A., Podkolodnaya O.A., Stepanenko I.L., Merkulova T.I., Pozdnyakov M.A., Podkolodny N. L., Naumochkin A.N., Romashchenko A.G. Transcription regulatory regions database (TRRD): its status in 2002. Nucl. Acids Res. 2002;30(1):312-317.
23. Levitsky V.G., Ignatieva E.V., Ananko E.A., Turnaev I.I., Merkulova T. I., Kolchanov N.A., Hodgman T.C. Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions. BMC Bioinformatics. 2007;8:481.
24. Loos R.J., Yeo G.S. The bigger picture of FTO: the first GWAS-identified obesity gene. Nat. Rev. Endocrinol. 2014;10(1):51-61. DOI 10.1038/nrendo.2013.227
25. Mittelstadt M.L., Patel R.C. AP-1 mediated transcriptional repression of matrix metalloproteinase-9 by recruitment of histone deacetylase 1 in response to interferon β. PLoS One. 2012;7(8):e42152. DOI 10.1371/journal.pone.0042152
26. Merkulova T.I., Ananko E.A., Ignat’eva E.V., Kolchanov N.A. Regulatory transcription codes in eukaryotic genomes. Genetika = Genetics (Moscow). 2013;49(1):37-54.
27. Nakamura T., Tashiro K., Nazarea M., Nakano T., Sasayama S., Honjo T. The murine lymphotoxin-beta receptor cDNA: isolation by the signal sequence trap and chromosomal mapping. Genomics. 1995; 30(2):312-319.
28. Nedospasov S.A., Kuprash D.V. Tumor necrosis factor and lymphotoxin: physiological function and role in cytokine and anti-cytokine therapy. Russkiy zhurnal “SPID, rak i obshchestvennoe zdorove” = Russian Journal of AIDS, Cancer, and Public Health. 2008; 12(1):69-76.
29. Onder L., Danuser R., Scandella E., Firner S., Chai Q., Hehlgans T., Stein J.V., Ludewig B. Endothelial cell-specific lymphotoxin-β receptor signaling is critical for lymph node and high endothelial venule formation. J. Exp. Med. 2013;210(3):465- 473. DOI 10.1084/jem.20121462
30. Seddon J.M., Berggren K.T., Fleeman L.M. Evolutionary history of DLA class II haplotypes in canine diabetes mellitus through single nucleotide polymorphism genotyping. Tissue Antigens. 2010;75(3):218-226. DOI 10.1111/j.1399-0039.2009.01426.x
31. Sheldon B.C., Verhulst S. Ecological immunology: costly parasite defences and trade- offs in evolutionary ecology. Trends Ecol. Evol. 1996;11(8):317-321.
32. Tierney R., Kirby H., Nagra J., Rickinson A., Bell A. The Epstein-Barr virus promoter initiating B-cell transformation is activated by RFX proteins and the B- cell-specific activator protein BSAP/Pax5. J. Virol. 2000;74(22):10458-10467.
33. Trapezov O.V. Darwinism and the lessons of practical selection in Russia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2009;13(2):249-297.
34. van der Most P.J., de Jong B., Parmentier H.K., Verhulst S. Trade-off between growth and immune function: a meta-analysis of selection experiments. Funct. Ecol. 2011;25(1):74-80. DOI 10.1111/j.1365-2435.2010.01800.x
35. Zhao F.Q. Octamer-binding transcription factors: genomics and functions. Front Biosci. 2013;18:1051-1071.
36. Zhang G., Li C., Li Q., Li B., Larkin D.M., Lee C., Storz J.F., Antunes A., Greenwold M.J., Meredith R.W., Ödeen A., Cui J., Zhou Q., Xu L., Pan H., Wang Z., Jin L., Zhang P., Hu H., Yang W., Hu J., Xiao J., Yang Z., Liu Y., Xie Q., Yu H., Lian J., Wen P., Zhang F ., Li H., Zeng Y ., Xiong Z., Liu S., Zhou L., Huang Z., An N., Wang J., Zheng Q., Xiong Y., Wang G., Wang B., Wang J., Fan Y., da Fonseca R.R., Alfaro-Núñez A., Schubert M., Orlando L., Mourier T., Howard J.T., Ganapathy G., Pfenning A., Whitney O., Rivas M.V., Hara E., Smith J., Farré M., Narayan J., Slavov G., Romanov M. N., Borges R., Machado J.P., Khan I., Springer M.S., Gatesy J., Hoffmann F.G., Opazo J.C., Håstad O., Sawyer R.H., Kim H., Kim K. W., Kim H.J., Cho S., Li N., Huang Y., Bruford M. W., Zhan X., Dixon A., Bertelsen M.F., Derryberry E., Warren W., Wilson R.K., Li S., Ray D.A., Green R.E., O’Brien S.J., Griffin D., Johnson W.E., Haussler D., Ryder O.A., Willerslev E., Graves G.R., Alström P., Fjeldså J., Mindell D.P., Edwards S.V., Braun E.L., Rahbek C., Burt D.W., Houde P., Zhang Y., Yang H., Wang J., Avian Genome Consortium; Jarvis E.D., Gilbert M.T., Wang J. Comparative genomics reveals insights into avian genome evolution and adaptation. Science. 2014;346(6215):1311-1320. DOI 10.1126/science.1251385