1. Тимонова Е.М., Добровольская О.Б., Сергеева Е.М., Бильданова Л.Л., Сурдий П., Фойе К., Салина Е.А. Сравнительное генетическое и цитогенетическое картирование хромосомы 5В пшеницы с использованием интрогрессивных линий. Генетика. 2013;49(12):1200-1206.
2. Akhunov E., Nicolet C., Dvorak J. Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor. Appl. Genet. 2009;119:507-517. https://doi.org/10.1007/s00122-009-1059-5
3. Adonina I.G., Goncharov N.P., Badaeva E.D., Sergeeva E.M., Petrash N.V., Salina E.A. (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. CompCytogen. 2015;9(4):533-547. https://doi.org/10.3897/CompCytogen. v9i4.5120
4. Areshchenkova T., Ganal M.W. Long tomato microsatellites are predominantly associated with centromeric regions. Genome. 1999;42:536-544.
5. Brenchley R., Spannagl M., Pfeifer M., Barker G.L.A., D’Amore R., Allen A.M., McKenzie N., Kramer M., Kerhornou A., Bolser D., Kay S., Waite D., Trick M., Bancroft I., Gu Y., Huo N., Luo M.- C., Sehgal S., Gill B., Kianian S., Anderson O., Kersey P., Dvorak J., McCombie W.R., Hall A., Mayer K.F.X., Edwards K.J., Bevan M. W., Hall N. Analysis of the bread wheat genome using wholegenome shotgun sequencing. Nature. 2012;491(7426):705-710. https://doi.org/10.1038/nature11650
6. Brown S.M., Szewc-McFadden A.K., Kresovich S. Development and application of simple sequence repeat (SSR) loci for plant genome analysis. Methods in Genome Analysis in Plants. Boca Raton: CRC Press, 1996.
7. Chapman J.A., Mascher M., Buluç A., Barry K., Georganas E., Session A., Strnadova V., Jenkins J., Sehgal S., Oliker L., Schmutz J., Yelick K.A., Scholz U., Waugh R., Poland J.A., Muehlbauer G.J., Stein N., Rokhsar D.S. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biology. 2015;16(1):26. https://doi.org/10.1186/s13059-015-0582-8
8. Chevreux B., Wetter T., Suhai S. Genome sequence assembly using trace signals and additional sequence information. Computer science and biology: Proc. of the German Conference on Bioinformatics. 1999:45-56.
9. Cuadrado A., Schwarzacher T., Jouve N. Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor. Appl. Genet. 2000;101:711-717. https://doi.org/10.1007/s001220051535
10. Cuadrado A., Cardoso M., Jouve N. Increasing the physical markers of wheat chromosomes using SSRs as FISH probes. Genome. 2008;51(10):809-815. https://doi.org/10.1139/G08-065
11. Endo T.R., Gill B.S. The deletion stocks of common wheat. J. Hered. 1996;87(4):295-307.
12. Feldman M. The origin of cultivated wheat. The World Wheat Book. Paris: Lavoisier Publishing, 2001.
13. Gusev V.D., Miroshnichenko L.A., Chuzhanova N.A. The detection of fractal-like structures in DNA sequences. Information science and computing. Int. Book Series, No. 8: Classification, forecasting, data mining. Sofia: ITHEA, 2009.
14. Gusev V.D., Nemytikova L.A., Chuzhanova N.A. On the complexity measures of genetic sequences. Bioinformatics. 1999;15(12):994-999. https://doi.org/10.1093/bioinformatics/15.12.994
15. International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491(7426):711-716. https://doi.org/10.1038/nature11543
16. International Wheat Genome Sequencing Consortium. A chromosomebased draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345(6194):1251788. https://doi.org/10.1126/science.1251788
17. Jia J., Zhao S., Kong X., Li Y., Zhao G., He W., Appels R., Pfeifer M., Tao Y., Zhang X., Jing R., Zhang C., Ma Y., Gao L., Gao C., Spannagl M., Mayer K.F.X., Li D., Pan S., Zheng F., Hu Q., Xia X., Li J., Liang Q., Chen J., Wicker T., Gou C., Kuang H., He G., Luo Y., Keller B., Xia Q., Lu P., Wang J., Zou H., Zhang R., Xu J., Gao J., Middleton C., Quan Z., Liu G., Wang J., International Wheat Genome Sequencing Consortium; Yang H., Liu X., He Z., Mao L., Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496(7443):91-95. https://doi.org/10.1038/nature12028
18. Langmead B., Salzberg S. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012;9:357-359.
19. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.; 1000 Genome Project Data Processing Subgroup. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009;25:2078-2079.
20. Li Y.-C., Korol A.B., Beiles A., Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 2002;11:2453-2465. https://doi.org/10.1046/j.1365-294X.2002.01643.x
21. Ling H.-Q., Zhao S., Liu D., Wang J., Sun H., Zhang C., Fan H., Li D., Dong L., Tao Y., Gao C., Wu H., Li Y., Cui Y., Guo X., Zheng S., Wang B., Yu K., Liang Q., Yang W., Lou X., Chen J., Feng M., Jian J., Zhang X., Luo G., Jiang Y, Liu J., Wang Z., Sha Y, Zhang B., Wu H., Tang D., Shen Q., Xue P., Zou S., Wang X., Liu X., Wang F., Yang Y., An X., Dong Z., Zhang K., Zhang X., Luo M.-C., Dvorak J., Tong Y., Wang J., Yang H., Li Z., Wang D., Zhang A., Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496(7443):87-90. https://doi.org/10.1038/nature11997
22. Logacheva M.D., Schelkunov M.I., Penin A.A. Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Genome Biol. Evol. 2011;3:1296-1303. https://doi.org/10.1093/gbe/evr102
23. Loman N.J., Misra R.V., Dallman T.J., Constantinidou C., Gharbia S.E., Wain J., Pallen M.J. Performance comparison of benchtop highthroughput sequencing platforms. Nat. Biotechnol. 2012;30(5):434-439. https://doi.org/10.1038/nbt.2198
24. Mason A.S. SSR genotyping. Methods Mol. Biol. 2015;1245:77-89. https://doi.org/10.1007/978-1-4939-1966-6_6
25. Pasquariello M., Barabaschi D., Himmelbach A., Steuernagel B., Ariyadasa R., Stein N., Gandolfi F., Tenedini E., Bernardis I., Tagliafico E., Pecchioni N., Francia E. The barley Frost resistance-H2 locus.
26. Funct. Integr. Genomic. 2014;14(1):85-100. https://doi.org/10.1007/s10142-014-0360-9
27. Paux E., Sourdille P., Salse J., Saintenac C., Choulet F., Leroy P., Korol A., Michalak M., Kianian S., Spielmeyer W., Lagudah E., Somers D., Kilian A., Alaux M., Vautrin S., Bergès H., Eversole K., Appels R., Safar J., Simkova H., Dolezel J., Bernard M., Feuillet C. Physical map of the 1-Gigabase bread wheat chromosome 3B. Science. 2008;322:101-104. https://doi.org/10.1126/science.1161847
28. Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995;91:1001-1007. https://doi.org/10.1007/BF00223912
29. Plaschke J., Börner A., Wendehake K., Ganal M.W., Röder M.S. The use of wheat aneuploids for the assignment of microsatellite loci. Euphytica. 1996;89:33-40. https://doi.org/10.1007/BF00015716
30. Sato S., Hirakawa H., Isobe S., Fukai E., Watanabe A., Kato M., Kawashima K., Minami C., Muraki A., Nakazaki N., Takahashi C., Nakayama S., Kishida Y., Kohara M., Yamada M., Tsuruoka H., Sasamoto S., Tabata S., Aizu T., Toyoda A., Shin-i T., Minakuchi Y., Kohara Y., Fujiyama A., Tsuchimoto S., Kajiyama S., Makigano E., Ohmido N., Shibagaki N., Cartagena J.A., Wada N., Kohinata T., Atefeh A., Yuasa S., Matsunaga S., Fukui K. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res. 2011;18(1):65-76. https://doi.org/10.1093/dnares/dsq030
31. Sears E.R. Nullisomic-tetrasomic combinations in hexaploid wheat. Chromosome manipulations and Plant Genetics. London: Oliver and Boyd, 1966. https://doi.org/10.1007/978-1-4899-6561-5_4
32. Sergeeva E.M., Afonnikov D.A., Koltunova M.K., Gusev V.D., Miroshnichenko L.A., Vrána J., Kubaláková M., Poncet C., Sourdille P., Feuillet C., Doležel J., Salina E.A. Common wheat chromosome 5B composition analysis using low-coverage 454 sequencing. Plant Genome. 2014;7(2):1-16. https://doi.org/10.3835/plantgenome2013.10.0031
33. Schmidt T., Heslop-Harrison J.S. The physical and genomic organization of microsatellites in sugar beet. Proc. Natl Acad. Sci. USA. 1996;93:8761-8765.
34. Staton S.E., Bakken B.H., Blackman B.K., Chapman M.A., Kane N. C., Tang S., Ungerer M.C., Knapp S.J., Rieseberg L.H., Burke J.M. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Plant J. 2012;72(1):142-153. https://doi.org/10.1111/j.1365-313X.2012.05072.x
35. Stein N., Steuernagel B. Advances in sequencing the barley genome. Genomics of plant genetic resources. Springer Netherlands, 2014. https://doi.org/10.1007/978-94-007-7572-5_16
36. Sourdille P., Singh S., Cadalen T., Brown-Guedira G.L., Gay G., Qi L., Gill B.S., Dufour P., Murigneux A., Bernard M. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct. Integr. Genomics. 2004;4:12-25. https://doi.org/10.1007/s10142-004-0106-1
37. Tautz D., Renz M. Simple sequences are ubiquitious repetitive component of eukaryotic genomes. Nucl. Acid. Res. 1984;12:4127-4138. https://doi.org/10.1093/nar/12.10.4127
38. Qi L., Echalier B., Friebe B., Gill B.S. Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct. Integr. Genomics. 2003;3:39-55. https://doi.org/10.1007/s10142-002-0063-5
39. Qu J., Liu J. A genome-wide analysis of simple sequence repeats in maize and the development of polymorphism markers from nextgeneration sequence data. BMC Res. Notes. 2013;6:403. https://doi.org/10.1186/1756-0500-6-403
40. Zhang Z., Deng Y., Tan J., Hu S., Yu J., Xue Q. A genome-wide microsatellite polymorphism database for the indica and japonica rice. DNA Res. 2007;14:37-45. https://doi.org/10.1093/dnares/dsm005