Hedgehog signaling in humans: the HH_Signal_pathway_db knowledge base
https://doi.org/10.18699/vjgb-25-103
Abstract
The rapid advancement of omics technologies (genomics, transcriptomics, proteomics, metabolomics) and other high-throughput methods for experimental studies of molecular genetic systems and processes has led to the generation of an unprecedentedly vast amount of heterogeneous and complex biological data. Effective use of this information resource requires systematic approaches to its analysis. One such approach involves the creation of domain-specific knowledge/data repositories that integrate information from multiple sources. This not only enables the storage and structuring of heterogeneous data distributed across various resources but also facilitates the acquisition of new insights into biological systems and processes. A systematic approach is also critical to solving the fundamental problem of biology – clarifying the regularities of morphogenesis. Morphogenesis is regulated through evolutionarily conserved signaling pathways (Hedgehog, Wnt, Notch, etc.). The Hedgehog (HH) pathway plays a key role in this process, as it begins functioning earlier than others in ontogenesis and determines the progression of every stage of an organism’s life cycle: from structuring embryonic primordia, histo- and organogenesis, to maintaining tissue homeostasis and regeneration in adults. Our work presents HH_Signal_pathway_db, a knowledge base that integrates curated data on the molecular components and functional roles of the human Hedgehog (HH) signaling pathway. The first release of the database (available upon request at bukharina@bionet.nsc.ru) contains information on 56 genes, their protein products, the regulatory interaction network, and established associations with pathological conditions in humans. HH_Signal_pathway_db provides researchers with a tool for gaining new knowledge about the role of the Hedgehog pathway in health and disease, and its potential applications in developmental biology and translational medicine.
Keywords
About the Authors
T. A. BukharinaRussian Federation
Novosibirsk
A. M. Bondarenko
Russian Federation
Novosibirsk
D. P. Furman
Russian Federation
Novosibirsk
References
1. Allen B.L., Tenzen T., McMahon A.P. The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev. 2007;21(10):1244-1257. doi: 10.1101/gad.1543607
2. Artavanis-Tsakonas S., Rand M.D., Lake R.J. Notch signaling: cell fate control and signal integration in development. Science. 1999; 284(5415):770-776. doi: 10.1126/science.284.5415.770
3. Bartel D.P. Metazoan microRNAs. Cell. 2018;173(1):20-51. doi: 10.1016/j.cell.2018.03.006
4. Breeze E. Role of Hedgehog signalling pathway in the maintenance and regeneration of adult tissues. J Cell Signal. 2022;7:281. doi: 10.35248/2576-1471.22.7.281
5. Brennan D., Chen X., Cheng L., Mahoney M., Riobo N.A. Noncanonical Hedgehog signaling. Vitam Horm. 2012;88:55-72. doi: 10.1016/B978-0-12-394622-5.00003-1
6. Briscoe J., Thérond P.P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 2013; 14(7):416-429. doi: 10.1038/nrm3598
7. Butí E., Mesquita D., Araújo S.J. Hedgehog is a positive regulator of FGF signalling during embryonic tracheal cell migration. PLoS One. 2014;9(3):e92682. doi: 10.1371/journal.pone.0092682
8. Carballo G.B., Honorato J.R., de Lopes G.P.F., Spohr T.C.L.S.E. A highlight on Sonic hedgehog pathway. Cell Commun Signal. 2018;16(1):11. doi: 10.1186/s12964-018-0220-7
9. Chen M.H., Wilson C.W., Li Y.J., Law K.K., Lu C.S., Gacayan R., Zhang X., Hui C.C., Chuang P.T. Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev. 2009;23(16):1910-1928. doi: 10.1101/gad.1794109
10. Cheng S.Y., Yue S. Role and regulation of human tumor suppressor SUFU in Hedgehog signaling. Adv Cancer Res. 2008;101:29-43. doi: 10.1016/S0065-230X(08)00402-8
11. Chuang P.T., McMahon A.P. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature. 1999; 397(6720):617-621. doi: 10.1038/17611
12. Chung K.M., Kim H., Roque C.G., McCurdy E.P., Nguyen T.T.T., Siegelin M.D., Hwang J.Y., Hengst U. A systemic cell stress signal confers neuronal resilience toward oxidative stress in a Hedgehogdependent manner. Cell Rep. 2022;41(3):111488. doi: 10.1016/j.celrep.2022.111488
13. Demenkov P.S., Ivanisenko T.V., Kolchanov N.A., Ivanisenko V.A. AND-Visio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the AND-System. In Silico Biol. 2011;11(3):149-161. doi: 10.3233/ISB-2012-0449
14. Dilower I., Niloy A.J., Kumar V., Kothari A., Lee E.B., Rumi M.A.K. Hedgehog signaling in gonadal development and function. Cells. 2023;12(3):358. doi: 10.3390/cells12030358
15. Dutta R.K., Jun J., Du K., Diehl A.M. Hedgehog signaling: implications in liver pathophysiology. Semin Liver Dis. 2023;43(4):418-428. doi: 10.1055/a-2187-3382
16. Echevarría-Andino M.L., Franks N.E., Schrader H.E., Hong M., Krauss R.S., Allen B.L. CDON contributes to Hedgehog-dependent patterning and growth of the developing limb. Dev Biol. 2023;493: 1-11. doi: 10.1016/j.ydbio.2022.09.011
17. Edeling M., Ragi G., Huang S., Pavenstädt H., Susztak K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol. 2016;12(7):426-439. doi: 10.1038/nrneph.2016.54
18. Eggenschwiler J.T., Anderson K.V. Cilia and developmental signaling. Annu Rev Cell Dev Biol. 2007;23:345-373. doi: 10.1146/annurev.cellbio.23.090506.123249
19. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57-74. doi: 10.1038/nature11247
20. Falkenstein K.N., Vokes S.A. Transcriptional regulation of graded Hedgehog signaling. Semin Cell Dev Biol. 2014;33:73-80. doi: 10.1016/j.semcdb.2014.05.010
21. Fang Z., Meng Q., Xu J., Wang W., Zhang B., Liu J., Liang C., Hua J., Zhao Y., Yu X., Shi S. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives. Cancer Commun (Lond). 2023;43(1):3-41. doi: 10.1002/cac2.12392
22. Filonov S.V., Podkolodnyy N.L., Podkolodnaya O.A., Tverdokhleb N.N., Ponomarenko P.M., Rasskazov D.A., Bogomolov A.G., Ponomarenko M.P. Human_SNP_TATAdb: a database of SNPs that statistically significantly change the affinity of the TATA-binding protein to human gene promoters: genome-wide analysis and use cases. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2023;27(7):728-736. doi: 10.18699/VJGB-23-85
23. Fitzsimons L.A., Brewer V.L., Tucker K.L. Hedgehog morphogens actas growth factors critical to pre- and postnatal cardiac development and maturation: how primary cilia mediate their signal transduction. Cells. 2022;11(12):1879. doi: 10.3390/cells11121879
24. Gao Q., Zhou G., Lin S.J., Paus R., Yue Z. How chemotherapy and radiotherapy damage the tissue: comparative biology lessons from feather and hair models. Exp Dermatol. 2019;28(4):413-418. doi: 10.1111/exd.13846
25. Gao Y., Shan Z., Jian C., Wang Y., Yao X., Li S., Ti X., Zhao G., Liu C., Zhang Q. HIB/SPOP inhibits Ci/Glimediated tumorigenesis by modulating the RNA polymerase II components stabilities. iScience. 2023;26(8):107334. doi: 10.1016/j.isci.2023.107334
26. Ghafouri-Fard S., Khoshbakht T., Hussen B.M., Taheri M., Samsami M. Emerging role of non-coding RNAs in the regulation of Sonic Hedgehog signaling pathway. Cancer Cell Int. 2022;22(1):282. doi: 10.1186/s12935-022-02702-y
27. Gorojankina T. Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction. Cell Mol Life Sci. 2016; 73(7):1317-1332. doi: 10.1007/s00018-015-2127-4
28. Harris L.G., Samant R.S., Shevde L.A. Hedgehog signaling: networking to nurture a promalignant tumor microenvironment. Mol Cancer Res. 2011;9(9):1165-1174. doi: 10.1158/1541-7786.MCR-11-0175
29. Helwak A., Kudla G., Dudnakova T., Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013;153(3):654-665. doi: 10.1016/j.cell.2013.03.043
30. Huttlin E.L., Bruckner R.J., Paulo J.A., Cannon J.R., Ting L., Baltier K., Colby G., … Guruharsha K.G., Li K., Artavanis-Tsakonas S., Gygi S.P., Harper J.W. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017; 545(7655):505-509. doi: 10.1038/nature22366
31. Ingham P.W. Hedgehog signaling. Curr Top Dev Biol. 2022;149:1-58. doi: 10.1016/bs.ctdb.2022.04.003
32. Ingham P.W., McMahon A.P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059-3087. doi: 10.1101/gad.938601
33. Ingham P.W., Nakano Y., Seger C. Mechanisms and functions of Hedgehog signalling across the metazoa. Nature Rev Genet. 2011; 12(6):393-406. doi: 10.1038/nrg2984
34. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. AND-System: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Systems Biol. 2015;9:S2. doi: 10.1186/1752-0509-9-S2-S2
35. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the AND-System tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019;20(Suppl. 1):34. doi: 10.1186/s12859-018-2567-6
36. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Kolchanov N.A. AND-System: a cognitive system for the reconstruction and analysis of knowledge graphs (gene networks) based on the automated extraction of data from scientific publications, patents, and factual databases. Nauka i Tekhnologii Sibiri. 2022;4(7):122-125. Available at: https://scitech.sb-ras.ru/upload/iblock/010/5ttp14te9uu1r5g0suu7ka05ui8udynq/nit_2022_7.pdf (in Russian)
37. Ivanov R.A., Mukhin A.M., Kazantsev F.V., Mustafin Z.S., Afonnikov D.A., Matushkin Y.G., Lashin S.A. Orthoweb: a software package for evolutionary analysis of gene networks. Vavilov J Genet Breed. 2024;28(8):874-881. doi: 10.18699/vjgb-24-95
38. Jamieson C., Martinelli G., Papayannidis C., Cortes J.E. Hedgehog pathway inhibitors: a new therapeutic class for the treatment of acute myeloid leukemia. Blood Cancer Discov. 2020;1(2):134-145. doi: 10.1158/2643-3230.BCD-20-0007
39. Jeffares D.C., Tomiczek B., Sojo V., dos Reis M. A beginners guide to estimating the non-synonymous to synonymous rate ratio of all protein-coding genes in a genome. Methods Mol Biol. 2015;1201: 65-90. doi: 10.1007/978-1-4939-1438-8_4
40. Jing J., Wu Z., Wang J., Luo G., Lin H., Fan Y., Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther. 2023;8(1):315. doi: 10.1038/s41392-023-01559-5
41. Kenneth J.H. Big Data among Big Data: Genome Data. 2022. Avail able at: https://3billion.io/blog/big-data-among-big-data-genome-data/
42. Kim N.H., Lee A.Y. Oxidative stress induces skin pigmentation in melasma by inhibiting Hedgehog signaling. Antioxidants (Basel). 2023; 12(11):1969. doi: 10.3390/antiox12111969
43. Kumar S., Balczarek K.A., Lai Z.C. Evolution of the hedgehog gene family. Genetics. 1996;142(3):965-972. doi: 10.1093/genetics/142.3.965
44. Logan C.Y., Nusse R. The Wnt signaling pathway in development and disease. Ann Rev Cell Dev Biol. 2004;20:781-810. doi: 10.1146/annurev.cellbio.20.010403.113126
45. Luo K. Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb Perspect Biol. 2017;9(1):a022137. doi: 10.1101/cshperspect.a022137
46. McIntyre G., Jackson Z., Colina J., Sekhar S., DiFeo A. miR-181a: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential. Expert Opin Ther Targets. 2024;28(12):1061-1091. doi: 10.1080/14728222.2024.2433687
47. Mustafin Z.S., Lashin S.A., Matushkin Yu.G. Phylostratigraphic analysis of gene networks of human diseases. Vavilov J Genet Breed. 2021;25(1):46-56. doi: 10.18699/VJ21.006
48. Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287(5785):795-801. doi: 10.1038/287795a0
49. Oro A.E. The primary cilia, a ‘Rab-id’ transit system for Hedgehog signaling. Curr Opin Cell Biol. 2007;19(6):691-696. doi: 10.1016/j.ceb.2007.10.008
50. Perrimon N., Pitsouli C., Shilo B.Z. Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol. 2012;4(8):a005975. doi: 10.1101/cshperspect.a005975
51. Regev A., Teichmann S.A., Lander E.S., Amit I., Benoist C., Birney E., Bodenmiller B., … Watt F., Weissman J., Wold B., Xavier R., Yosef N., Human Cell Atlas Meeting Participants. The Human Cell Atlas. eLife. 2017;6:e27041. doi: 10.7554/eLife.27041
52. Rimkus T.K., Carpenter R.L., Qasem S., Chan M., Lo H.W. Targeting the sonic Hedgehog signaling pathway: review of Smoothened and GLI inhibitors. Cancers (Basel). 2016;8(2):22. doi: 10.3390/cancers8020022
53. Roy S., Ingham P.W. Hedgehogs tryst with the cell cycle. J Cell Sci. 2002;115(Pt 23):4393-4397. doi: 10.1242/jcs.00158
54. Rubin D.C. Intestinal morphogenesis. Curr Opin Gastroenterol. 2007; 23(2):111-114. doi: 10.1097/MOG.0b013e3280145082
55. Schermelleh L., Ferrand A., Huser T., Eggeling C., Sauer M., Biehlmaier O., Drummen G.P. Super-resolution microscopy demystified. Nat Cell Biol. 2019;21(1):72-84. doi: 10.1038/s41556-018-0251-8
56. Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216-W221. doi: 10.1093/nar/gkac194
57. Shimeld S.M., van den Heuvel M., Dawber R., Briscoe J. An amphioxus Gli gene reveals conservation of midline patterning and the evolution of hedgehog signalling diversity in chordates. PLoS One. 2007;2(9):e864. doi: 10.1371/journal.pone.0000864
58. Skoda A.M., Simovic D., Karin V., Kardum V., Vranic S., Serman L. The role of the Hedgehog signaling pathway in cancer : a comprehensive review. Bosn J Basic Med Sci. 2018;18(1):8-20. doi: 10.17305/bjbms.2018.2756
59. Song J.Y., Holtz A.M., Pinskey J.M., Allen B.L. Distinct structural requirements for CDON and BOC in the promotion of Hedgehog signaling. Dev Biol. 2015;402(2):239-252. doi: 10.1016/j.ydbio.2015.03.015
60. Spielman S.J., Wilke C.O. The relationship between dN/dS and scaled selection coefficients. Mol Biol Evol. 2015;32(4):1097-1108. doi: 10.1093/molbev/msv003
61. Spinella-Jaegle S., Rawadi G., Kawai S., Gallea S., Faucheu C., Mollat P., Courtois B., Bergaud B., Ramez V., Blanchet A.M., Adelmant G., Baron R., Roman-Roman S. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci. 2001; 114(Pt. 11):2085-2094. doi: 10.1242/jcs.114.11.2085
62. van der Weele C.M., Hospes K.C., Rowe K.E., Jeffery W.R. Hypoxiasonic hedgehog axis as a driver of primitive hematopoiesis development and evolution in cavefish. Dev Biol. 2024;516:138-147. doi: 10.1016/j.ydbio.2024.08.008
63. Varjosalo M., Taipale J. Hedgehog signaling. J Cell Sci. 2007; 120(Pt. 1):3-6. doi: 10.1242/jcs.03309
64. Vokes S.A., Ji H., McCuine S., Tenzen T., Giles S., Zhong S., Longabaugh W.J., Davidson E.H., Wong W.H., McMahon A.P. Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development. 2007;134(10):1977-1989. doi: 10.1242/dev.001966
65. Wang B., Fallon J.F., Beachy P.A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell. 2000;100(4):423-434. doi: 10.1016/s0092-8674(00)80678-9
66. Willis S., Day C.L., Hinds M.G., Huang D.C. The Bcl-2-regulated apoptotic pathway. J Cell Sci. 2003;116(Pt. 20):4053-4056. doi: 10.1242/jcs.00754
67. Wilson C.W., Chuang P.T. Mechanism and evolution of cytosolic Hedgehog signal transduction. Development. 2010;137(13):2079-2094. doi: 10.1242/dev.045021
68. Wu F., Zhang Y., Sun B., McMahon A.P., Wang Y. Hedgehog signaling: from basic biology to cancer therapy. Cell Chem Biol. 2017; 24(3):252-280. doi: 10.1016/j.chembiol.2017.02.010





