Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Генная сеть и база знаний по терморегуляции организма человека

https://doi.org/10.18699/vjgb-25-106

Аннотация

   Реконструкция и анализ генных сетей, регулирующих биологические процессы, – один из эффективных подходов к исследованию сложных систем обеспечения жизнедеятельности организмов. Терморегуляция – важ­ное эволюционное приобретение человека и других теплокровных животных. Терморегуляция осуществляется при участии многих физиологических систем организма (нервной, сердечно­-сосудистой, эндокринной, дыхательной, мышечной и т. д.), что способствует поддержанию относительно постоянной температуры тела в условиях колебания температуры окружающей среды.

   Цель работы – компьютерная реконструкция генной сети терморегуляции че­ловека и представление полученных результатов в соответствующей базе знаний Termo_Reg_Human 1.0.

   Генная сеть реконструирована с использованием программно­-информационной системы ANDSystem, предназначенной для автоматизированного извлечения знаний и фактов из текстов научных публикаций и баз данных биомедицинской направленности, основанной на методах машинного обучения и искусственного интеллекта. База знаний Termo_Reg_Human 1.0 (https://www.sysbio.ru/ThermoReg_Human/) содержит информацию о генной сети терморегуляции человека, включая описание 469 генов, 473 белков и 265 микроРНК, значимых для ее функционирования; взаимодействиях между этими объектами, а также эволюционные характеристики генов. С использованием программного инструмента AND-Visio (модуля системы AND-System) проведена приоритизация каждого гена, белка и микроРНК, участвующих в терморегуляции организма человека по их функциональной нагруженности – количеству связей с другими объектами реконструированной генной сети. Установлено, что к числу ключевых объектов, имеющих наи­большее количество функциональных связей в генной сети терморегуляции человека, относятся гены UCP1, VEGFA, PPARG, DDIT3, белки STAT3, JUN, VEGFA, TLR4, TNFA и микроРНК hsa­mir­335 и hsa­mir­26b. Обнаружено обогащение генной сети терморегуляции генами, предковые варианты которых сформировались на эволюционных этапах по­явления одноклеточных организмов и дивергенции позвоночных.

Об авторах

Е. В. Игнатьева
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



П. С. Деменков
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



А. Г. Богомолов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Р. А. Иванов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



С. А. Лашин
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



А. Д. Михайлова
Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



А. Е. Алексеева
Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



Н. С. Юдин
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Список литературы

1. Aich A., Wang C., Chowdhury A., Ronsör C., Pacheu­Grau D., Richter­ Dennerlein R., Dennerlein S., Rehling P. COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis. eLife. 2018;7:e32572. doi: 10.7554/eLife.32572

2. Benjamini Y., Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29(4)1165-1188. doi: 10.1214/aos/1013699998

3. Blondin D.P., Haman F. Shivering and nonshivering thermogenesis in skeletal muscles. Handb Clin Neurol. 2018;156:153-173. doi: 10.1016/B978-0-444-63912-7.00010-2

4. Cao D.S., Yu S.Q., Premkumar L.S. Modulation of transient receptor potential Vanilloid 4­-mediated membrane currents and synaptic transmission by protein kinase C. Mol Pain. 2009;5:5. doi: 10.1186/1744-8069-5-5

5. Charkoudian N., Hart E.C.J., Barnes J.N., Joyner M.J. Autonomic control of body temperature and blood pressure: influences of female sex hormones. Clin Auton Res. 2017;27(3):149-155. doi: 10.1007/s10286-017-0420-z

6. Cheng W., Yang F., Liu S., Colton C.K., Wang C., Cui Y., Cao X., Zhu M.X., Sun C., Wang K., Zheng J. Heteromeric heat­sensitive transient receptor potential channels exhibit distinct temperature and chemical response. J Biol Chem. 2012;287(10):7279-7288. doi: 10.1074/jbc.M111.305045

7. Cui S., Yu S., Huang H.Y., Lin Y.C.D., Huang Y., Zhang B., Xiao J., … Chen B., Zhang H., Fu J., Wang L., Huang H.­D. miRTarBase 2025: updates to the collection of experimentally validated microRNA target interactions. Nucleic Acids Res. 2025;53(D1):D147-D156. doi: 10.1093/nar/gkae1072

8. Dumont L., Richard G., Espagnet R., Frisch F., Fortin M., Samson A., Bouchard J., … Dubreuil S., Guérin B., Turcotte É.E., Carpentier A.C., Blondin D.P. Shivering, but not adipose tissue thermoge­nesis, increases as a function of mean skin temperature in cold­exposed men and women. Cell Metab. 2025;37(9):1789-1805.e4. doi: 10.1016/j.cmet.2025.06.010

9. Festuccia W.T., Blanchard P.­G., Turcotte V., Laplante M., Sariahmetoglu M., Brindley D.N., Deshaies Y. Depot-specific effects of the PPARγ agonist rosiglitazone on adipose tissue glucose uptake and metabolism. J Lipid Res. 2009;50(6):1185-1194. doi: 10.1194/jlr.M800620-JLR200

10. Gil A., María Aguilera C., Gil­Campos M., Cañete R. Altered signalling and gene expression associated with the immune system and the inflammatory response in obesity. Br J Nutr. 2007;98(Suppl. 1): S121­S126. doi: 10.1017/S0007114507838050

11. Gouin O., L’Herondelle K., Lebonvallet N., Le Gall­Ianotto C., Sakka M., Buhé V., Plée­Gautier E., Carré J.L., Lefeuvre L., Misery L., Le Garrec R. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell. 2017;8(9):644-661. doi: 10.1007/s13238-017-0395-5

12. Horii Y., Shiina T., Uehara S., Nomura K., Shimaoka H., Horii K., Shimizu Y. Hypothermia induces changes in the alternative splicing pattern of cold­inducible RNA­binding protein transcripts in a non­hibernator, the mouse. Biomed Res. 2019;40(4):153­161. doi: 10.2220/biomedres.40.153

13. Ignatieva E.V., Igoshin A.V., Yudin N.S. A database of human genes and a gene network involved in response to tick­borne encephalitis virus infection. BMC Evol Biol. 2017;17(Suppl. 2):259. doi: 10.1186/s12862-017-1107-8

14. Ikeda K., Yamada T. UCP1 dependent and independent thermogene sis in brown and beige adipocytes. Front Endocrinol (Lausanne). 2020; 11:498. doi: 10.3389/fendo.2020.00498

15. Inoue A., Yanagisawa M., Kimura S., Kasuya Y., Miyauchi T., Goto K., Masaki T. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA. 1989;(8):2863-2867. doi: 10.1073/pnas.86.8.2863

16. Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. An accurate and effi­cient approach to knowledge extraction from scientific publications using structured ontology models, graph neural networks, and large language models. Int J Mol Sci. 2024;25(21):11811. doi: 10.3390/ijms252111811

17. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the AND-System tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019;20(Suppl. 1):34. doi: 10.1186/s12859-018-2567-6

18. Ivanov R.A., Mukhin A.M., Kazantsev F.V., Mustafin Z.S., Afonnikov D.A., Matushkin Y.G., Lashin S.A. Orthoweb: a software package for evolutionary analysis of gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2024;28(8): 874-881. doi: 10.18699/vjgb-24-95

19. Jiang T., Wang X., Wu W., Zhang F., Wu S. Let-7c miRNA inhibits the proliferation and migration of heat-denatured dermal fibroblasts through down-regulating HSP70. Mol Cells. 2016;39(4):345­351. doi: 10.14348/molcells.2016.2336

20. Johnson Rowsey P. Thermoregulation: cytokines involved in fever and exercise. Annu Rev Nurs Res. 2013;31:19­46. doi: 10.1891/0739-6686.31.19

21. Kim J.Y., Tillison K., Lee J.H., Rearick D.A., Smas C.M. The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-α in 3T3-L1 adipocytes and is a target for transactivation by PPARγ. Am J Physiol Endocrinol Metab. 2006;291(1): E115-E127. doi: 10.1152/ajpendo.00317.2005

22. Kudsi S.Q., Piccoli B.C., Ardisson­Araújo D., Trevisan G. Transcriptional landscape of TRPV1, TRPA1, TRPV4, and TRPM8 channels throughout human tissues. Life Sci. 2022;308:120977. doi: 10.1016/j.lfs.2022.120977

23. Leon L.R., White A.A., Kluger M.J. Role of IL­6 and TNF in ther­ moregulation and survival during sepsis in mice. Am J Physiol. 1998;275(1):R269-R277. doi: 10.1152/ajpregu.1998.275.1.R269

24. Li Y., Adamek P., Zhang H., Tatsui C.E., Rhines L.D., Mrozkova P., Li Q., … Jawad A.B., Ghetti A., Yan J., Palecek J., Dougherty P.M. The cancer chemotherapeutic paclitaxel increases human and rodent sensory neuron responses to TRPV1 by activation of TLR4. J Neurosci. 2015;35(39):13487-13500. doi: 10.1523/jneurosci.195615.2015

25. McCafferty D.J., Pandraud G., Gilles J., Fabra-Puchol M., Henry P.Y. Animal thermoregulation : a review of insulation, physiology and behaviour relevant to temperature control in buildings. Bioinspir Biomim. 2017;13(1):011001. doi: 10.1088/1748-3190/aa9a12

26. Mikhailova A.D., Lashin S.A., Ivanisenko V.A., Demenkov P.S., Ignatieva E.V. Reconstruction and computer analysis of the structural and functional organization of the gene network regulating cholesterol biosynthesis in humans and the evolutionary characteristics of the genes involved in the network. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2024;28(8):864-873. doi: 10.18699/vjgb-24-94

27. Mittag J., Kolms B. Hypothalamic control of heart rate and body tem­perature by thyroid hormones. Rev Endocr Metab Disord. 2025. doi: 10.1007/s11154-025-09966-5

28. Mustafin Z.S., Lashin S.A., Matushkin Y.G., Gunbin K.V., Afonnikov D.A. Orthoscape: a cytoscape application for grouping and visualization KEGG based gene networks by taxonomy and homo­logy principles. BMC Bioinformatics. 2017;18(Suppl. 1):1427. doi: 10.1186/s12859-016-1427-5

29. Mustafin Z.S., Zamyatin V.I., Konstantinov D.K., Doroshkov A.V., Lashin S.A., Afonnikov D.A. Phylostratigraphic analysis shows the earliest origination of the abiotic stress associated genes in A. thaliana. Genes. 2019;10(12):963. doi: 10.3390/genes10120963

30. Mustafin Z.S., Lashin S.A., Matushkin Yu.G. Phylostratigraphic analysis of gene networks of human diseases. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2021;25(1):46­56. doi: 10.18699/VJ21.006

31. Naik N.A., Bhat I.A., Afroze D., Rasool R., Mir H., Andrabi S.I., Shah S., Siddiqi M.A., Shah Z.A. Vascular endothelial growth factor A gene (VEGFA) polymorphisms and expression of VEGFA gene in lung cancer patients of Kashmir Valley (India). Tumour Biol. 2012;33(3):833-839. doi: 10.1007/s13277-011-0306­y

32. Nakamura K. Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol. 2011;301(5): R1207-R1228. doi: 10.1152/ajpregu.00109.2011

33. Nakamura K. Central mechanisms of thermoregulation and fever in mammals. Adv Exp Med Biol. 2024;1461:141­159. doi: 10.1007/978-981-97-4584-5_10

34. Netea M.G., Kullberg B.J., Van der Meer J.W. Circulating cytokines as mediators of fever. Clin Infect Dis. 2000;31(Suppl. 5):S178-S184. doi: 10.1086/317513

35. Nguyen M.Q., Wu Y., Bonilla L.S., von Buchholtz L.J., Ryba N.J.P. Diversity amongst trigeminal neurons revealed by high throughput single cell sequencing. PLoS One. 2017;12(9):e0185543. doi: 10.1371/journal.pone.0185543

36. O’Brien J., Hayder H., Zayed Y., Peng C. Overview of microRNA bio­genesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. doi: 10.3389/fendo.2018.00402

37. Okla M., Wang W., Kang I., Pashaj A., Carr T., Chung S. Activation of Toll­like receptor 4 (TLR4) attenuates adaptive thermogenesis via endoplasmic reticulum stress. J Biol Chem. 2015;290(44):26476-26490. doi: 10.1074/jbc.M115.677724

38. Okla M., Zaher W., Alfayez M., Chung S. Inhibitory effects of Toll-like receptor 4, NLRP3 inflammasome, and interleukin-1β on white adipocyte browning. Inflammation. 2018;41(2):626-642. doi: 10.1007/s10753-017-0718-y

39. Osvath M., Němec P., Brusatte S.L., Witmer L.M. Thought for food: the endothermic brain hypothesis. Trends Cogn Sci. 2024;28(11):998-1010. doi: 10.1016/j.tics.2024.08.002

40. Permenter M.G., McDyre B.C., Ippolito D.L., Stallings J.D. Alterations in tissue microRNA after heat stress in the conscious rat: potential biomarkers of organ-specific injury. BMC Genomics. 2019;20(1): 141. doi: 10.1186/s12864-019-5515-6

41. Rehman R., Bhat Y.A., Panda L., Mabalirajan U. TRPV1 inhibition attenuates IL­13 mediated asthma features in mice by reducing airway epithelial injury. Int Immunopharmacol. 2013;15(3):597-605. doi: 10.1016/j.intimp.2013.02.010

42. Roth J., Blatteis C.M. Mechanisms of fever production and lysis: lessons from experimental LPS fever. Compr Physiol. 2014;4(4): 1563­1604. doi: 10.1002/cphy.c130033

43. Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Dosenko V.E., Zolotareva O.I., Choynzonov E.L., Hofestaedt R., Ivanisenko V.A. Search for new candidate genes involved in the codity of asthma and hypertension based on automatic analysis of scientific literature. J Integr Bioinform. 2018;15(4):20180054. doi: 10.1515/jib-2018-0054

44. Schonthaler H.B., Guinea-Viniegra J., Wagner E.F. Targeting inflam­mation by modulating the Jun/AP­1 pathway. Ann Rheum Dis. 2011; 70(Suppl. 1):i109-i112. doi: 10.1136/ard.2010.140533

45. Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216­W221. doi: 10.1093/nar/gkac194

46. Song L., Cao X., Ji W., Zhao L., Yang W., Lu M., Yang J. Inhibition of STAT3 enhances UCP1 expression and mitochondrial function in brown adipocytes. Eur J Pharmacol. 2022;926:175040. doi: 10.1016/j.ejphar.2022.175040

47. Tansey E.A., Johnson C.D. Recent advances in thermoregulation. Adv Physiol Educ. 2015;39(3):139-148. doi: 10.1152/advan.00126.2014

48. Tattersall G.J., Sinclair B.J., Withers P.C., Fields P.A., Seebacher F., Cooper C.E., Maloney S.K. Coping with thermal challenges: physio­logical adaptations to environmental temperatures. Compr Physiol. 2012;2(3):2151­2202. doi: 10.1002/cphy.c110055

49. Valdivia L.F.G., Castro É., Eichler R.A.D.S., Moreno M.F., de Sousa É., Jardim G.F.R., Peixoto Á.S., Moraes M.N., Castrucci A.M.L., Nedergaard J., Petrovic N., Festuccia W.T., Reckziegel P. Cold acclimation and pioglitazone combined increase thermogenic capacity of brown and white adipose tissues but this does not translate into higher energy expenditure in mice. Am J Physiol Endocrinol Metab. 2023;324(4):E358-E373. doi: 10.1152/ajpendo.00217.2022

50. Valladares A., Roncero C., Benito M., Porras A. TNF-α inhibits UCP- 1 expression in brown adipocytes via ERKs. Opposite effect of p38MAPK. FEBS Lett. 2001;493(1):6­11. doi: 10.1016/s0014-5793(01)02264­5

51. Wakiyama M., Takimoto K. N-terminal Ago-binding domain of GW182 contains a tryptophan­rich region that confer binding to the CCR4­ NOT complex. Genes Cells. 2022;27(9):579-585. doi: 10.1111/gtc.12974

52. Wingo A.P., Almli L.M., Stevens J.S., Klengel T., Uddin M., Li Y., Bustamante A.C., … Bradley B., Binder E.B., Jin P., Gibson G., Ressler K.J. DICER1 and microRNA regulation in post­traumatic stress disorder with comorbid depression. Nat Commun. 2015;6: 10106. doi: 10.1038/ncomms10106

53. Wollenberg Valero K.C., Pathak R., Prajapati I., Bankston S., Thompson A., Usher J., Isokpehi R.D. A candidate multimodal functional genetic network for thermal adaptation. PeerJ. 2014;2:e578. doi: 10.7717/peerj.578

54. Xiao F., Guo Y., Deng J., Yuan F., Xiao Y., Hui L., Li Y., … Chen Y., Ying H., Zhai Q., Chen S., Guo F. Hepatic c­Jun regulates glucose metabolism via FGF21 and modulates body temperature through the neural signals. Mol Metab. 2019;20:138-148. doi: 10.1016/j.molmet.2018.12.003

55. Yoshida A., Furube E., Mannari T., Takayama Y., Kittaka H., Tominaga M., Miyata S. TRPV1 is crucial for proinflammatory STAT3 sig­naling and thermoregulation­associated pathways in the brain during inflammation. Sci Rep. 2016;6:26088. doi: 10.1038/srep26088

56. Zhu W., Oxford G.S. Phosphoinositide­3­kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1. Mol Cell Neurosci. 2007;34(4):689-700. doi: 10.1016/j.mcn.2007.01.005


Рецензия

Просмотров: 60


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)