Searching for biological processes as targets for rheumatoid arthritis targeted therapy with AND-System, an integrated software and information platform
https://doi.org/10.18699/vjgb-25-107
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized primarily by joint involvement with progressive destruction of cartilage and bone tissue. To date, RA remains an incurable disease that leads to a significant deterioration in quality of life and patient disability. Despite a wide arsenal of disease-modifying antirheumatic drugs, approximately 40 % of patients show an insufficient response to standard treatment, highlighting the urgent need to identify new pharmacological targets.
The aim of this study was to search for novel biological processes that could serve as promising targets for the targeted therapy of RA.
To achieve this goal, we employed an approach based on the automated extraction of knowledge from scientific publications and biomedical databases using the ANDSystem software. This approach involved the reconstruction and subsequent analysis of two types of associative gene networks: a) gene networks describing genes and proteins associated with the development of RA, and b) gene networks describing genes and proteins involved in the functional responses to drugs used for the disease’s therapy. The analysis of the reconstructed networks identified 11 biological processes that play a significant role in the pathogenesis of RA but are not yet direct targets of existing disease-modifying antirheumatic drugs. The most promising of these, described by Gene Ontology terms, include: a) the Toll-like receptor signaling pathway; b) neutrophil activation; c) regulation of osteoblast differentiation; d) regulation of osteoclast differentiation; e) the prostaglandin biosynthetic process, and f) the canonical Wnt signaling pathway. The identified biological processes and their key regulators represent promising targets for the development of new drugs capable of improving the efficacy of RA therapy, particularly in patients resistant to existing treatments. The developed approach can also be successfully applied to the search for new targeted therapy targets for other diseases.
About the Authors
E. L. MishchenkoRussian Federation
Novosibirsk
I. V. Yatsyk
Russian Federation
Novosibirsk
P. S. Demenkov
Russian Federation
Novosibirsk
A. V. Adamovskaya
Russian Federation
Novosibirsk
T. V. Ivanisenko
Russian Federation
Novosibirsk
M. A. Kleshchev
Russian Federation
Novosibirsk
V. A. Ivanisenko
Russian Federation
Novosibirsk
References
1. Adis Editorial. Tofacitinib. Drugs R D. 2010;10(4):271-284. doi: 10.2165/11588080-000000000-00000
2. Alam M.J., Xie L., Ang C., Fahimi F., Willingham S.B., Kueh A.J., Herold M.J., Mackay C.R., Robert R. Therapeutic blockade of CXCR2 rapidly clears inflammation in arthritis and atopic dermatitis models: demonstration with surrogate and humanized antibodies. mAbs. 2020;12(1):1856460. doi: 10.1080/19420862.2020.1856460
3. Cici D., Corrado A., Rotondo C., Cantatore F.P. Wnt signaling and biological therapy in rheumatoid arthritis and spondyloarthritis. Int J Mol Sci. 2019;20(22):5552. doi: 10.3390/ijms20225552
4. Demenkov P.S., Oshchepkova Е.А., Ivanisenko T.V., Ivanisenko V.A. Prioritization of biological processes based on the reconstruction and analysis of associative gene networks describing the response of plants to adverse environmental factors. Vavilov J Genet Breed. 2021;25(5):580-592. doi: 10.18699/VJ21.065
5. Ding Q., Hu W., Wang R., Yang Q., Zhu M., Li M., Cai J., Rose P., Mao J., Zhu Y.Z. Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther. 2023; 8(1):68. doi: 10.1038/s41392-023-01331-9
6. Figus F.A., Piga M., Azzolin I., McConnell R., Iagnocco A. Rheumatoid arthritis: extra-articular manifestations and comorbidities. Autoimmun Rev. 2021;20(4):102776. doi: 10.1016/j.autrev.2021.102776
7. Firestein G.S., McInnes I.B. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46(2):183-196. doi: 10.1016/j.immuni.2017.02.006
8. GBD 2021 Rheumatoid Arthritis Collaborators. Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050 : a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023;5(10):e594-e610. doi: 10.1016/S2665-9913(23)00211-4
9. Gong L., Thorn C.F., Bertagnolli M.M., Grosser T., Altman R.B., Klein T.E. Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012;22(4):310-318. doi: 10.1097/FPC.0b013e32834f94cb
10. Guo Q., Wang Y., Xu D., Nossent J., Pavlos N.J., Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15. doi: 10.1038/s41413-018-0016-9
11. Hill J., Harrison J., Christian D., Reed J., Clegg A., Duffield S.J., Goodson N., Marson T. The prevalence of comorbidity in rheumatoid arthritis : a systematic review and meta-analysis. Br J Community Nurs. 2022;27(5):232-241. doi: 10.12968/bjcn.2022.27.5.232
12. Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. An accurate and efficient approach to knowledge extraction from scientific publications using structured ontology models, graph neural networks, and large language models. Int J Mol Sci. 2024;25(21):11811. doi: 10.3390/ijms252111811
13. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the AND-System tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks. BMC Bioinformatics. 2019;20(Suppl. 1):34. doi: 10.1186/s12859-018-2567-6
14. Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Y.I., Voevoda S.M. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation. Sci Rep. 2022; 12(1):19977. doi: 10.1038/s41598-022-24170-0
15. Ivanisenko V.A., Rogachev A.D., Makarova A.A., Basov N.V., Gaisler E.V., Kuzmicheva I.N., Demenkov P.S., … Kolchanov N.A., Plesko V.V., Moroz G.B., Lomivorotov V.V., Pokrovsky A.G. AI-assisted identification of primary and secondary metabolomic markers for postoperative delirium. Int J Mol Sci. 2024;25(21):11847. doi: 10.3390/ijms252111847
16. Kawahara K., Hohjoh H., Inazumi T., Tsuchiya S., Sugimoto Y. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim Biophys Acta. 2015;1851(4):414-421. doi: 10.1016/j.bbalip.2014.07.008
17. Kawasaki T., Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. doi: 10.3389/fimmu.2014.00461
18. Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Likhoshvai V.A., Matushkin Yu.G. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2013;17(4/2):833-850 (in Russian)
19. Kvien T.K., Uhlig T., Ødegård S., Heiberg M.S. Epidemiological aspects of rheumatoid arthritis: the sex ratio. Ann NY Acad Sci. 2006;1069:212-222. doi: 10.1196/annals.1351.019
20. Llorente I., García-Castañeda N., Valero C., González-Álvaro I., Castañeda S. Osteoporosis in rheumatoid arthritis: dangerous liaisons. Front Med (Lausanne). 2020;7:601618. doi: 10.3389/fmed.2020.601618
21. Miao C.G., Yang Y.Y., He X., Li X.F., Huang C., Huang Y., Zhang L., Lv X.W., Jin Y., Li J. Wnt signaling pathway in rheumatoid arthritis. Cell Signal. 2013;25(10):2069-2078. doi: 10.1016/j.cellsig.2013.04.002
22. Mohd Jaya F.N., Garcia S.G., Borràs F.E., Chan G.C.F., Franquesa M. Paradoxical role of Breg-inducing cytokines in autoimmune diseases. J Transl Autoimmun. 2019;2:100011. doi: 10.1016/j.jtauto.2019.100011
23. Nasonov E.L., Lila A.M., Karateev D.E., Mazurov V.I. et al. Clinical Recommendations. Rheumatoid Arthritis. All-Russian Public Organization “Association of Rheumatologists of Russia”, 2024. KR250 (in Russian)
24. Olivera P.A., Lasa J.S., Bonovas S., Danese S., Peyrin-Biroulet L. Safety of Janus kinase inhibitors in patients with inflammatory bowel diseases or other immune-mediated diseases : a systematic review and meta-analysis. Gastroenterology. 2020;158(6):1554-1573. doi: 10.1053/j.gastro.2020.01.001
25. Palmroth M., Kuuliala K., Peltomaa R., Virtanen A., Kuuliala A., Kurttila A., Kinnunen A., Leirisalo-Repo M., Silvennoinen O., Isomäki P. Tofacitinib suppresses several JAK-STAT pathways in rheumatoid arthritis in vivo and baseline signaling profile associates with treatment response. Front Immunol. 2021;12:738481. doi: 10.3389/fimmu.2021.738481
26. Park J.Y., Pillinger M.H., Abramson S.B. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol. 2006; 119(3):229-240. doi: 10.1016/j.clim.2006.01.016
27. Prajapati P., Doshi G. An update on the emerging role of Wnt/β-catenin, SYK, PI3K/AKT, and GM-CSF signaling pathways in rheumatoid arthritis. Curr Drug Targets. 2023;24(17):1298-1316. doi: 10.2174/0113894501276093231206064243
28. Rabelo F.S., da Mota L.M., Lima R.A., Lima F.A., Barra G.B., de Carvalho J.F., Amato A.A. The Wnt signaling pathway and rheumatoid arthritis. Autoimmun Rev. 2010;9(4):207-210. doi: 10.1016/j.autrev.2009.08.003
29. Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W. DAVID: a web server for functional enrichment analysis (2021 update). Nucleic Acids Res. 2022;50(W1):W216-W221. doi: 10.1093/nar/gkac194
30. Singh A.K., Haque M., Madarampalli B., Shi Y., Wildman B.J., Basit A., Khuder S.A., Prasad B., Hassan Q., Ouseph M.M., Ahmed S. Ets-2 propagates IL-6 trans-signaling mediated osteoclast-like changes in human rheumatoid arthritis synovial fibroblast. Front Immunol. 2021;12:746503. doi: 10.3389/fimmu.2021.746503
31. Smolen J.S., Aletaha D., McInnes I.B. Rheumatoid arthritis. Lancet. 2016;388(10055):2023-2038. doi: 10.1016/S0140-6736(16)30173-8
32. Smolen J.S., Landewé R.B.M., Bergstra S.A., Kerschbaumer A., Sepriano A., Aletaha D., Caporali R., ... van der Helm-van Mil A., van Duuren E., Vliet Vlieland T.P.M., Westhovens R., van der Heijde D. EULAR recommendations for the management of rheumatoid arthritis: 2022 update. Ann Rheum Dis. 2023;82(1):3-18. doi: 10.1136/ard-2022-223356
33. Stump K.L., Lu L.D., Dobrzanski P., Serdikoff C., Gingrich D.E., Dugan B.J., Angeles T.S., Albom M.S., Ator M.A., Dorsey B.D., Ruggeri B.A., Seavey M.M. A highly selective, orally active inhibitor of Janus kinase 2, CEP-33779. Arthritis Res Ther. 2011;13(2):R68. doi: 10.1186/ar3329
34. Unterberger S., Davies K.A., Rambhatla S.B., Sacre S. Contribution of toll-like receptors and the NLRP3 inflammasome in rheumatoid arthritis pathophysiology. Immunotargets Ther. 2021;10:285-298. doi: 10.2147/ITT.S288547
35. van der Kooij S.M., de Vries-Bouwstra J.K., Goekoop-Ruiterman Y.P., van Zeben D., Kerstens P.J., Gerards A.H., van Groenendael J.H., Hazes J.M., Breedveld F.C., Allaart C.F., Dijkmans B.A. Limited efficacy of conventional DMARDs after initial methotrexate failure. Ann Rheum Dis. 2007;66(10):1356-1362. doi: 10.1136/ard.2006.066662
36. Wang R., Li M., Wu W., Qiu Y., Hu W., Li Z., Wang Z., Yu Y., Liao J., Sun W., Mao J., Zhu Y.Z. NAV2 positively modulates inflammatory response through Wnt/β-catenin signaling in rheumatoid arthritis. Clin Transl Med. 2021;11(4):e376. doi: 10.1002/ctm2.376
37. Wang S.Y., Liu Y.Y., Ye H., Guo J.P., Li R., Liu X., Li Z.G. Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol. 2011;38(5):821-827. doi: 10.3899/jrheum.100089
38. Yao C., Narumiya S. Prostaglandin-cytokine crosstalk in chronic inflammation. Br J Pharmacol. 2019;176(3):337-354. doi: 10.1111/bph.14530






