Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Molecular dynamic analysis of the functional role of amino acid residues V99, F124 and S125 of human DNA dioxygenase ABH2

https://doi.org/10.18699/vjgb-25-111

Abstract

   The ABH2 enzyme belongs to the AlkB-like family of Fe(II)/α-ketoglutarate-dependent dioxygenases. Various non-heme dioxygenases act on a wide range of substrates and have a complex catalytic mechanism involving α-ketoglutarate and an Fe(II) ion as a cofactor. Representatives of the AlkB family catalyze the direct oxidation of alkyl substituents in the nitrogenous bases of DNA and RNA, providing protection against the mutagenic effects of endogenous and exogenous alkylating agents, and also participate in the regulation of the methylation level of some RNAs. DNA dioxygenase ABH2, localized predominantly in the cell nucleus, is specific for double-stranded DNA substrates and, unlike most other human AlkB-like enzymes, has a fairly broad spectrum of substrate specificity, oxidizing alkyl groups of such modified nitrogenous bases as, for example, N 1-methyladenosine, N 3-methylcytidine, 1,N 6-ethenoadenosine and 3,N 4-ethenocytidine.

   To analyze the mechanism underlying the enzyme’s substrate specificity and to clarify the functional role of key active-site amino acid residues, we performed molecular dynamics simulations of complexes of the wild-type ABH2 enzyme and its mutant forms containing amino acid substitutions V99A, F124A and S125A with two types of DNA substrates carrying methylated bases N 1-methyladenine and N 3-methylcytosine, respectively.

   It was found that the V99A substitution leads to an increase in the mobility of protein loops L1 and L2 involved in binding the DNA substrate and changes the distribution of π-π contacts between the side chain of residue F102 and nitrogenous bases located near the damaged nucleotide. The F124A substitution leads to the loss of π-π stacking with the damaged base, which in turn destabilizes the architecture of the active site, disrupts the interaction with the iron ion and prevents optimal catalytic positioning of α-ketoglutarate in the active site. The S125A substitution leads to the loss of direct interaction of the L2 loop with the 5’-phosphate group of the damaged nucleotide, weakening the binding of the enzyme to the DNA substrate. Thus, the obtained data revealed the functional role of three amino acid residues of the active site and contributed to the understanding of the structural-functional relationships in the recognition of a damaged nucleotide and the formation of a catalytic complex by the human ABH2 enzyme.

About the Authors

M. Zhao
Novosibirsk State University
Russian Federation

Novosibirsk



T. E. Tyugashev
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. T. Davletgildeeva
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



N. A. Kuznetsov
Novosibirsk State University; Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Aas P.A., Otterlei M., Falnes P., Vågbø C.B., Skorpen F., Akbari M., Sundheim O., Bjørås M., Slupphaug G., Seeberg E., Krokan H.E. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature. 2003;421:859-863. doi: 10.1038/nature01363

2. Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25. doi: 10.1016/j.softx.2015.06.001

3. Anandakrishnan R., Aguilar B., Onufriev A.V. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 2012;40:W537-W541. doi: 10.1093/nar/gks375

4. Bayly C.I., Cieplak P., Cornell W., Kollman P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem. 1993;97:10269-10280. doi: 10.1021/j100142a004

5. Bian K., Lenz S.A.P., Tang Q., Chen F., Qi R., Jost M., Drennan C.L., Essigmann J.M., Wetmore S.D., Li D. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro. Nucleic Acids Res. 2019;47(11):5522-5529. doi: 10.1093/nar/gkz395

6. Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):014101. doi: 10.1063/1.2408420

7. Chen B., Liu H., Sun X., Yang C.-G. Mechanistic insight into the recognition of single-stranded and double-stranded DNA substrates by ABH2 and ABH3. Mol Biosyst. 2010;6(11):2143-2149. doi: 10.1039/c005148a

8. Chen B., Gan J., Yang C. The complex structures of ALKBH2 mutants cross-linked to dsDNA reveal the conformational swing of β-hairpin. Sci China Chem. 2014;57:307-313. doi: 10.1007/s11426-013-5029-z

9. Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117(19): 5179-5197. doi: 10.1021/ja00124a002

10. Davletgildeeva A.T., Tyugashev T.E., Zhao M., Kuznetsov N.A., Ishchenko A.A., Saparbaev M., Kuznetsova A.A. Individual contributions of amido acid residues Tyr122, Ile168, and Asp173 to the activity and substrate specificity of human DNA dioxygenase ABH2. Cells. 2023;12(14):1839. doi: 10.3390/cells12141839

11. Davletgildeeva A.T., Tyugashev T.E., Zhao M., Ishchenko A.A., Saparbaev M., Kuznetsov N.A. Role of individual amino acid residues directly involved in damage recognition in active demethylation by ABH2 dioxygenase. Int J Mol Sci. 2025;26:6912. doi: 10.3390/ijms26146912

12. Duncan T., Trewick S.C., Koivisto P., Bates P.A., Lindahl T., Sedgwick B. Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci USA. 2002;99(26):16660-16665. doi: 10.1073/pnas.262589799

13. Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J Chem Phys. 1995; 103:8577-8593. doi: 10.1063/1.470117

14. Falnes P. Repair of 3-methylthymine and 1-methylguanine lesions by bacterial and human AlkB proteins. Nucleic Acids Res. 2004;32: 6260-6267. doi: 10.1093/nar/gkh964

15. Giri N.C., Sun H., Chen H., Costa M., Maroney M.J. X-ray absorption spectroscopy structural investigation of early intermediates in the mechanism of DNA repair by human ABH2. Biochemistry. 2011; 50(22):5067-5076. doi: 10.1021/bi101668x

16. Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463-1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

17. Jiang Y., Zhang H., Tan T. Rational design of methodology-independent metal parameters using a nonbonded dummy model. J Chem Theory Comput. 2016;12(7):3250-3260. doi: 10.1021/acs.jctc.6b00223

18. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926-935. doi: 10.1063/1.445869

19. Joung I.S., Cheatham T.E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008;112:9020-9041. doi: 10.1021/jp8001614

20. Kuznetsov N.A., Kanazhevskaya L.Y., Fedorova O.S. DNA demethylation in the processes of repair and epigenetic regulation performed by 2-ketoglutarate-dependent DNA dioxygenases. Int J Mol Sci. 2021;22:10540. doi: 10.3390/ijms221910540

21. Lee D.H., Jin S.G., Cai S., Chen Y., Pfeifer G.P., O’Connor T.R. Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J Biol Chem. 2005;280(47):39448-39459. doi: 10.1074/jbc.M509881200

22. Lenz S.A.P., Li D., Wetmore S.D. Insights into the direct oxidative repair of etheno lesions: MD and QM/MM study on the substrate scope of ALKBH2 and AlkB. DNA Repair (Amst). 2020;96:102944. doi: 10.1016/j.dnarep.2020.102944

23. Li P., Gao S., Wang L., Yu F., Li J., Wang C., Li J., Wong J. ABH2 couples regulation of ribosomal DNA transcription with DNA alkyla tion repair. Cell Rep. 2013;4:817-829. doi: 10.1016/j.celrep.2013.07.027

24. Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11:3696-3713. doi: 10.1021/acs.jctc.5b00255

25. McGibbon R.T., Beauchamp K.A., Harrigan M.P., Klein C., Swails J.M., Hernández C.X., Schwantes C.R., Wang L.-P., Lane T.J., Pande V.S. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J. 2015;109:1528-1532. doi: 10.1016/j.bpj.2015.08.015

26. Monsen V.T., Sundheim O., Aas P.A., Westbye M.P., Sousa M.M.L., Slupphaug G., Krokan H.E. Divergent β-hairpins determine doublestrand versus single-strand substrate recognition of human AlkB-homologues 2 and 3. Nucleic Acids Res. 2010;38:6447-6455. doi: 10.1093/nar/gkq518

27. Müller T.A., Hausinger R.P. AlkB and its homologues. DNA repair and beyond. In: Schofield C., Hausinger R. (Eds) 2-Oxoglutarate-Dependent Oxygenases. Royal Society Chemistry. 2015;246-262. doi: 10.1039/9781782621959-00246

28. Ougland R., Rognes T., Klungland A., Larsen E. Non-homologous functions of the AlkB homologs. J Mol Cell Biol. 2015;7(6):494-504. doi: 10.1093/jmcb/mjv029

29. Parrinello M., Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182-7190. doi: 10.1063/1.328693

30. Ringvoll J., Nordstrand L.M., Vagbo C.B., Talstad V., Reite K., Aas P.A., Lauritzen K.H., Liabakk N.B., Bjork A., Doughty R.W., Falnes P.O., Krokan H.E., Klungland A. Repair deficient mice reveal mABH2 as the primary oxidative demethylase for repairing 1meA and 3meC lesions in DNA. Embo J. 2006;25:2189-2198. doi: 10.1038/sj.emboj.7601109

31. Ringvoll J., Moen M.N., Nordstrand L.M., Meira L.B., Pang B., Bekkelund A., Dedon P.C., Bjelland S., Samson L.D., Falnes P.Ø., Klungland A. AlkB homologue 2 – mediated repair of ethenoadenine lesions in mammalian DNA. Cancer Res. 2008;68(11):4142-4149. doi: 10.1158/0008-5472.CAN-08-0796

32. Šali A., Blundell T.L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779-815. doi: 10.1006/jmbi.1993.1626

33. Sall S.O., Berens J.T.P., Molinier J. DNA damage and DNA me thylation. In: Jasiulionis M.G. (Ed.) Epigenetics and DNA Damage. Academic Press, 2022;3-16. doi: 10.1016/B978-0-323-91081-1.00005-4

34. Sousa da Silva A.W., Vranken W.F. ACPYPE – AnteChamber PYthon Parser interfacE. BMC Res Notes. 2012;5:367. doi: 10.1186/1756-0500-5-367

35. Travers A., Muskhelishvili G. DNA structure and function. FEBS J. 2015;282(12):2279-2295. doi: 10.1111/febs.13307

36. Vanquelef E., Simon S., Marquant G., Garcia E., Klimerak G., Delepine J.C., Cieplak P., Dupradeau F.-Y. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 2011;39:W511-W517. doi: 10.1093/nar/gkr288

37. Waheed S.O., Ramanan R., Chaturvedi S.S., Lehnert N., Schofield C.J., Christov C.Z., Karabencheva-Christova T.G. Role of structural dynamics in selectivity and mechanism of non-heme Fe(II) and 2-oxoglutarate-dependent oxygenases involved in DNA repair. ACS Cent Sci. 2020;6(5):795-814. doi: 10.1021/acscentsci.0c00312

38. Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157-1174. doi: 10.1002/jcc.20035

39. Wang J., Wang W., Kollman P.A., Case D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model. 2006;25(2):247-260. doi: 10.1016/j.jmgm.2005.12.005

40. Wilson D.L., Beharry A.A., Srivastava A., O’Connor T.R., Kool E.T. Fluorescence probes for ALKBH2 allow the measurement of DNA alkylation repair and drug resistance responses. Angew Chem Int Ed Engl. 2018;57(39):12896-12900. doi: 10.1002/anie.201807593

41. Xu B., Liu D., Wang Z., Tian R., Zuo Y. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family. Cell Mol Life Sci. 2021;78:129-141. doi: 10.1007/s00018-020-03594-9

42. Yang C.G., Yi C., Duguid E.M., Sullivan C.T., Jian X., Rice P.A., He C. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature. 2008;452:961-965. doi: 10.1038/nature06889

43. Yang C.G., Garcia K., He C. Damage detection and base flipping in direct DNA alkylation repair. Chembiochem. 2009;10(3):417-423. doi: 10.1002/cbic.200800580

44. Yi C., He C. DNA repair by reversal of DNA damage. Cold Spring Harb Perspect Biol. 2013;5:a012575. doi: 10.1101/cshperspect.a012575

45. Yi C., Yang C.G., He C. A non-heme iron-mediated chemical demethylation in DNA and RNA. Acc Chem Res. 2009;42(4):519-529. doi: 10.1021/ar800178j

46. Yi C., Chen B., Qi B., Zhang W., Jia G., Zhang L., Li C.J., Dinner A.R., Yang C.-G., He C. Duplex interrogation by a direct DNA repair protein in search of base damage. Nat Struct Mol Biol. 2012;19: 671-676. doi: 10.1038/nsmb.2320

47. Zgarbová M., Otyepka M., Sponer J., Mládek A., Banáš P., Cheatham T.E., Jurečka P. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput. 2011;7(9):2886-2902. doi: 10.1021/ct200162x

48. Zgarbová M., Šponer J., Otyepka M., Cheatham T.E., Galindo-Murillo R., Jurečka P. Refinement of the sugar-phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J Chem Theory Comput. 2015;11(12):5723-5736. doi: 10.1021/acs.jctc.5b00716


Review

Views: 70


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)