Identification of microsatellite loci according to BAC sequencing data and their physical mapping to the bread wheat 5B chromosome
https://doi.org/10.18699/VJ15.086
Abstract
The shortage of polymorphic markers for the regions of wheat chromosomes that encode commercially valuable traits determined the need for studying wheat microsatellite loci. In this work, SSR markers for individual regions in the short arm of bread wheat chromosome 5B (5BS) were designed based on sequencing data for BAC clones, and the regions of the corresponding chromosome were saturated with these markers. Totally, 130 randomly selected BAC clones from the 5BS library were sequenced on the Ion Torrent platform and assembled in contigs using MIRA software. The assembly characteristics (N50 = 4 136 bp) are comparable to the recently obtained data for wheat and relative species and acceptable for identification of microsatellite loci. An algorithm utilizing the properties of complexity decompositions in he sliding-window mode was used to detect DNA sequences with a repeat unit of 2–4 bp. Analysis of 17 770 contigs with the total length of 25 879 921 bp allowed for designing 113, 79, and 67 microsatellite (SSR) loci with a repeat unit of 2, 3, and 4 bp, respectively. The SSR markers with a motif of 3 bp were tested using nullitetrasomic lines of Chinese Spring wheat homoeologous group 5. Thus, 21 markers specific for chromosome 5B were detected. Eight of these markers were mapped to the distal region of this chromosome (bin 5BS6) using a set of Chinese Spring deletion lines for 5BS. Eight and four markers were mapped to the interstitial region (bins 5BS5 and 5BS4, respectively). One marker was mapped to a pericentromeric bin. A comparative analysis of the distribution of trinucleotide microsatellites over wheat chromosome 5B and in different cereal species suggests that the (AAG)n repeat has proliferated and has been maintained during the evolution of cereals.
Keywords
About the Authors
M. A. NesterovRussian Federation
D. A. Afonnikov
Russian Federation
E. M. Sergeeva
Russian Federation
L. A. Miroshnichenko
Russian Federation
M. K. Bragina
Russian Federation
A. O. Bragin
Russian Federation
G. V. Vasiliev
Russian Federation
E. A. Salina
Russian Federation
References
1. Akhunov E., Nicolet C., Dvorak J. Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor. Appl. Genet. 2009;119:507- 517. DOI 10.1007/s00122-009-1059-5
2. Adonina I.G., Goncharov N.P., Badaeva E.D., Sergeeva E.M., Petrash N.V., Salina E.A. (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. CompCytogen. 2015;9(4):533-547. DOI 10.3897/CompCytogen.v9i4.5120
3. Areshchenkova T., Ganal M.W. Long tomato microsatellites are predominantly associated with centromeric regions. Genome. 1999;42: 536-544.
4. Brenchley R., Spannagl M., Pfeifer M., Barker G.L.A., D’Amore R., Allen A.M., McKenzie N., Kramer M., Kerhornou A., Bolser D., Kay S., Waite D., Trick M., Bancroft I., Gu Y., Huo N., Luo M.- C., Sehgal S., Gill B., Kianian S., Anderson O., Kersey P., Dvorak J., McCombie W.R., Hall A., Mayer K.F.X., Edwards K.J., Bevan M. W., Hall N. Analysis of the bread wheat genome using wholegenome shotgun sequencing. Nature. 2012;491(7426):705-710. DOI 10.1038/nature11650
5. Brown S.M., Szewc-McFadden A.K., Kresovich S. Development and application of simple sequence repeat (SSR) loci for plant genome analysis. Methods in Genome Analysis in Plants. Boca Raton: CRC Press, 1996.
6. Chapman J.A., Mascher M., Buluç A., Barry K., Georganas E., Session A., Strnadova V., Jenkins J., Sehgal S., Oliker L., Schmutz J., Yelick K.A., Scholz U., Waugh R., Poland J.A., Muehlbauer G.J., Stein N., Rokhsar D.S. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biology. 2015;16(1):26. DOI 10.1186/s13059-015-0582-8
7. Chevreux B., Wetter T., Suhai S. Genome sequence assembly using trace signals and additional sequence information. Computer science and biology: Proc. of the German Conference on Bioinformatics. 1999:45-56.
8. Cuadrado A., Schwarzacher T., Jouve N. Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor. Appl. Genet. 2000;101:711-717. DOI 10.1007/s001220051535
9. Cuadrado A., Cardoso M., Jouve N. Increasing the physical markers of wheat chromosomes using SSRs as FISH probes. Genome. 2008;51(10):809-815. DOI 10.1139/G08- 065
10. Endo T.R., Gill B.S. The deletion stocks of common wheat. J. Hered. 1996;87(4):295-307.
11. Feldman M. The origin of cultivated wheat. The World Wheat Book. Paris: Lavoisier Publishing, 2001.
12. Gusev V.D., Miroshnichenko L.A., Chuzhanova N.A. The detection of fractal-like structures in DNA sequences. Information science and computing. Int. Book Series, No. 8: Classification, forecasting, data mining. Sofia: ITHEA, 2009.
13. Gusev V.D., Nemytikova L.A., Chuzhanova N.A. On the complexity measures of genetic sequences. Bioinformatics. 1999;15(12):994-999. DOI 10.1093/bioinformatics/15.12.994
14. International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491(7426):711-716. DOI 10.1038/nature11543
15. International Wheat Genome Sequencing Consortium. A chromosomebased draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345(6194):1251788. DOI 10.1126/science.1251788
16. Jia J., Zhao S., Kong X., Li Y., Zhao G., He W., Appels R., Pfeifer M., Tao Y., Zhang X., Jing R., Zhang C., Ma Y., Gao L., Gao C., Spannagl M., Mayer K.F.X., Li D., Pan S., Zheng F., Hu Q., Xia X., Li J., Liang Q., Chen J., Wicker T., Gou C., Kuang H., He G., Luo Y., Keller B., Xia Q., Lu P., Wang J., Zou H., Zhang R., Xu J., Gao J., Middleton C., Quan Z., Liu G., Wang J., International Wheat Genome Sequencing Consortium; Yang H., Liu X., He Z., Mao L., Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496(7443):91-95. DOI 10.1038/nature12028
17. Langmead B., Salzberg S. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012;9:357-359.
18. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.; 1000 Genome Project Data Processing Subgroup. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009;25:2078-2079.
19. Li Y.-C., Korol A.B., Beiles A., Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 2002;11:2453-2465. DOI 10.1046/j.1365-294X.2002.01643.x
20. Ling H.-Q., Zhao S., Liu D., Wang J., Sun H., Zhang C., Fan H., Li D., Dong L., Tao Y., Gao C., Wu H., Li Y., Cui Y., Guo X., Zheng S., Wang B., Yu K., Liang Q., Yang W., Lou X., Chen J., Feng M., Jian J., Zhang X., Luo G., Jiang Y., Liu J., Wang Z., Sha Y., Zhang B., Wu H., Tang D., Shen Q., Xue P., Zou S., Wang X., Liu X., Wang F., Yang Y., An X., Dong Z., Zhang K., Zhang X., Luo M.-C., Dvorak J., Tong Y., Wang J., Yang H., Li Z., Wang D., Zhang A., Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496(7443):87-90. DOI 10.1038/nature11997
21. Logacheva M.D., Schelkunov M.I., Penin A.A. Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Genome Biol. Evol. 2011;3:1296-1303. DOI 10.1093/gbe/evr102
22. Loman N.J., Misra R.V., Dallman T.J., Constantinidou C., Gharbia S.E., Wain J., Pallen M.J. Performance comparison of benchtop highthroughput sequencing platforms. Nat. Biotechnol. 2012;30(5):434-439. DOI 10.1038/nbt.2198
23. Mason A.S. SSR genotyping. Methods Mol. Biol. 2015;1245:77-89. DOI 10.1007/978-1- 4939-1966-6_6
24. Pasquariello M., Barabaschi D., Himmelbach A., Steuernagel B., Ariyadasa R., Stein N., Gandolfi F., Tenedini E., Bernardis I., Tagliafico E., Pecchioni N., Francia E. The barley Frost resistance-H2 locus. Funct. Integr. Genomic. 2014;14(1):85-100. DOI 10.1007/s10142-014-0360-9
25. Paux E., Sourdille P., Salse J., Saintenac C., Choulet F., Leroy P., Korol A., Michalak M., Kianian S., Spielmeyer W., Lagudah E., Somers D., Kilian A., Alaux M., Vautrin S., Bergès H., Eversole K., Appels R., Safar J., Simkova H., Dolezel J., Bernard M., Feuillet C. Physical map of the 1-Gigabase bread wheat chromosome 3B. Science. 2008;322:101-104. DOI 10.1126/science.1161847
26. Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995;91:1001-1007. DOI 10.1007/BF00223912
27. Plaschke J., Börner A., Wendehake K., Ganal M.W., Röder M.S. The use of wheat aneuploids for the assignment of microsatellite loci. Euphytica. 1996;89:33-40. DOI 10.1007/BF00015716
28. Sato S., Hirakawa H., Isobe S., Fukai E., Watanabe A., Kato M., Kawashima K., Minami C., Muraki A., Nakazaki N., Takahashi C., Nakayama S., Kishida Y., Kohara M., Yamada M., Tsuruoka H., Sasamoto S., Tabata S., Aizu T., Toyoda A., Shin-i T., Minakuchi Y., Kohara Y., Fujiyama A., Tsuchimoto S., Kajiyama S., Makigano E., Ohmido N., Shibagaki N., Cartagena J.A., Wada N., Kohinata T., Atefeh A., Yuasa S., Matsunaga S., Fukui K. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res. 2011;18(1):65-76. DOI 10.1093/dnares/dsq030
29. Sears E.R. Nullisomic-tetrasomic combinations in hexaploid wheat. Chromosome manipulations and Plant Genetics. London: Oliver and Boyd, 1966. DOI 10.1007/978-1-4899-6561-5_4
30. Sergeeva E.M., Afonnikov D.A., Koltunova M.K., Gusev V.D., Miroshnichenko L.A., Vrána J., Kubaláková M., Poncet C., Sourdille P., Feuillet C., Doležel J., Salina E.A. Common wheat chromosome 5B composition analysis using low-coverage 454 sequencing. Plant Genome. 2014;7(2):1-16. DOI 10.3835/plantgenome2013.10.0031
31. Schmidt T., Heslop-Harrison J.S. The physical and genomic organization of microsatellites in sugar beet. Proc. Natl Acad. Sci. USA. 1996;93:8761-8765.
32. Staton S.E., Bakken B.H., Blackman B.K., Chapman M.A., Kane N. C., Tang S., Ungerer M.C., Knapp S.J., Rieseberg L.H., Burke J.M. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Plant J. 2012;72(1):142-153. DOI 10.1111/j.1365-313X.2012.05072.x
33. Stein N., Steuernagel B. Advances in sequencing the barley genome. Genomics of plant genetic resources. Springer Netherlands, 2014. DOI 10.1007/978-94-007-7572-5_16
34. Sourdille P., Singh S., Cadalen T., Brown-Guedira G.L., Gay G., Qi L., Gill B.S., Dufour P., Murigneux A., Bernard M. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct. Integr. Genomics. 2004;4:12-25. DOI 10.1007/s10142-004-0106-1
35. Tautz D., Renz M. Simple sequences are ubiquitious repetitive component of eukaryotic genomes. Nucl. Acid. Res. 1984;12:4127-4138. DOI: 10.1093/nar/12.10.4127
36. Timonova E.M., Dobrovol’skaya O.B., Sergeeva E.M., Bildanova L.L., Sourdille P., Feuillet C., Salina E.A. A comparative genetic and cytogenetic mapping of wheat chromosome 5B using introgression lines. Genetika = Genetics (Moscow). 2013;49(12):1200-1206.
37. Qi L., Echalier B., Friebe B., Gill B.S. Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct. Integr. Genomics. 2003;3:39-55. DOI 10.1007/s10142-002-0063-5
38. Qu J., Liu J. A genome-wide analysis of simple sequence repeats in maize and the development of polymorphism markers from nextgeneration sequence data. BMC Res. Notes. 2013;6:403. DOI 10.1186/1756-0500-6-403
39. Zhang Z., Deng Y., Tan J., Hu S., Yu J., Xue Q. A genome-wide microsatellite polymorphism database for the indica and japonica rice. DNA Res. 2007;14:37-45. DOI 10.1093/dnares/dsm005