Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Клеточная стенка растений и механизмы устойчивости к патогенам

https://doi.org/10.18699/VJ15.109

Полный текст:

Аннотация

Огромное число грибов, бактерий и вирусов потенциально способны инфицировать ткани и вызывать заболевания растений. Устойчивость растений к патогенам основывается на сложной сети конститутивных и индуцированных защитных реакций, в контроле которых задействовано большое число генов. Клеточная стенка является первым препятствием, которое должны преодолеть патогенные микроорганизмы. Успешная защита на уровне клеточной стенки может остановить вторжение подавляющего большинства потенциальных фитопатогенов. Разные виды растений различаются по структуре клеточной стенки. Основу клеточной стенки составляет сеть из микрофибрилл целлюлозы, пересекаемых молекулами гемицеллюлозы. В растущих частях растения эта сеть встроена в матрикс из пектиновых полисахаридов. В уже сформировавшихся тканях клеточные стенки усилены лигнином. Кроме полисахаридов, клеточная стенка содержит значительное количество белков, выполняющих структурную и ферментативную функции. Информация о многочисленных белках клеточных стенок разных видов растений представлена в базе данных WallProtDB. Каждый из компонентов клеточной стенки вносит вклад в формирование устойчивости к патогенам. В местах контакта с потенциальными патогенами происходит дополнительное укрепление клеточной стенки и накопление антимикробных вторичных метаболитов. Патогены секретируют ферменты, способные расщеплять компоненты клеточной стенки. В ответ на атаку микробов растение продуцирует ингибиторы микробных гидролитических ферментов. Растение также способно оценивать количество компонентов клеточной стенки. Так, мутанты с дефицитом целлюлозы обычно имеют повышенный уровень лигнификации и усиление защитного ответа. Возникающие после действия микробных ферментов низкомолекулярные фрагменты клеточной стенки выполняют сигнальную функцию, усиливая защитную реакцию растения. Таким образом, клеточная стенка является динамической структурой, способной предотвращать проникновение большинства потенциальных патогенов и запускать разные варианты иммунного ответа. Реконструкция генных сетей, контролирующих структурно-функциональную организацию клеточной стенки в процессе роста и в условиях биотических и абиотических стрессов, необходима для понимания молекулярных механизмов развития и стрессоустойчивости. В обзоре рассматриваются механизмы специфической и неспецифической устойчивости растений к патогенам различной природы, связанные с клеточной стенкой. Обсуждаются структура клеточной стенки и роль различных компонентов в детекции инвазии фитопатогенов и индукции защитных механизмов.

Об авторах

О. Г. Смирнова
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет», Новосибирск, Россия
Россия


А. В. Кочетов
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет», Новосибирск, Россия
Россия


Список литературы

1. Михайлова Р.В. Мацерирующие ферменты мицелиальных грибов в биотехнологии. Минск: Белорус. наука, 2007.

2. Смирнова О.Г., Кочетов А.В. Промоторы генов, регулирующих ответ на патогены у растений. Вавиловский журнал генетики и селекции. 2014;18(4/1):765-775

3. Филипенко Е.А., Кочетов А.В., Канаяма Ю., Малиновский В.И., Шумный В.К. PR-белки с рибонуклеазной активностью и устойчивость растений к патогенным грибам. Вавиловский журнал генетики и селекции. 2013;17(2):326-334.

4. Ayliffe M., Devilla R., Mago R., White R., Talbot M., Pryor A., Leung H. Nonhost resistance of rice to rust pathogens. Mol. Plant-Microbe Interact. 2011a;24:1143-1155.

5. Ayliffe M., Jin Y., Kang Z.S., Persson M., Steffenson B., Wang S.P., Leung H. Determining the basis of nonhost resistance in rice to cereal rusts. Euphytica. 2011b;179:33-40. DOI 10.1007/s10681-010-0280-2

6. Azinheira H.G., Silva M.D., Talhinhas P., Medeira C., Maia I., Petitot A.S., Fernandez D. Non-host resistance responses of Arabidopsis thaliana to the coffee leaf rust fungus (Hemileia vastatrix). Botany. 2010;88:621-629.

7. Bayles C.J., Ghemawat M.S., Aist J.R. Inhibition by 2-deoxy-D-glucose of callose formation, papilla deposition, and resistance to powdery mildew in an mlo barley mutant. Physiol. Mol. Plant Pathol. 1990;36:63-72. DOI 10.1016/0885-5765(90)90092-C

8. Bednarek P., Piślewska-Bednarek M., Svatoš A., Schneider B., Doubský J., Mansurova M., Humphry M., Consonni C., Panstruga R., Sanchez-Vallet A., Molina A., Schulze-Lefert P. A glucosinolate metabolism pathway in living plant cells mediates broadspectrum antifungal defense. Science. 2009;232:101-106. DOI 10.1126/science.1163732

9. Belien T., Van Campenhout S., Robben J., Volckaert G. Microbial endoxylanases: effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems? Mol. Plant-Microbe Interact. 2006;19:1072-1081.

10. Bellincampi D., Camardella L., Delcour J.A., Desseaux V., D’Ovidio R., Durand A., Elliot G., Gebruers K., Giovane A., Juge N., Sørensen J. F., Svensson B., Vairo D. Potential physiological role of plant glycosidase inhibitors. Biochim. Biophys. Acta. 2004;1696(2):265-274. DOI 10.1016/j.bbapap.2003.10.011

11. Bhuiyan N., Liu W., Liu G., Selvaraj G., Wei Y., King J. Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat. Plant Mol. Biol. 2007;64:305-318.

12. Bhuiyan N.H., Selvaraj G., Wei Y., King J. Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. J. Exp. Bot. 2009;60:509-521. DOI 10.1093/jxb/ern290

13. Bishop D.L., Chyatterton N.J., Harrison P.A., Hatfield R.D. Changes in carbohydrate partitioning and cell wall remodeling with stressinduced pathogenesis in wheat sheaths. Physiol. Mol. Plant Pathol. 2002;61:53-63. DOI 10.1006/pmpp.2002.0416

14. Boller T., Felix G. A renaissance of elicitors: perception of microbeassociated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 2009;60:379-406. DOI 10.1146/annurev.arplant.57.032905.105346

15. Bolton M.D., Van Esse H.P., Vossen J.H., De Jonge R., Stergiopoulos I., Stulemeijer I.J., van den Berg G.C., Borrás-Hidalgo O., Dekker H. L., de Koster C.G., de Wit P.J., Joosten M.H., Thomma B.P. The novel Cladosporium fulvum lysin motif effector Ecp6 is avirulence factor with orthologues in other fungal species. Mol. Microbiol. 2008; 69(1):119-136. DOI 10.1111/j.1365-2958.2008.06270.x

16. Bout S., Vermerris W. A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol. Genet. Genomics. 2003;269:205-214. DOI 10.1007/s00438-003-0824-4

17. Bueter C.L., Specht C.A., Levitz S.M. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9:e1003080. DOI 10.1371/journal. ppat.1003080

18. Cano-Delgado A., Penfield S., Smith C., Catley M., Bevan M. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 2003;34:351-362. DOI 10.1046/j.1365-313X.2003.01729.x

19. Casassola A., Brammer S.P., Chaves M.S., Martinelli J.A., Stefanato F., Boyd L.A. Changes in gene expression profiles as they relate to the adult plant leaf rust resistance in the wheat cv. Toropi. Physiol Mol. Plant Pathol. 2015;89:49-54. DOI 10.1016/j.pmpp.2014.12.004

20. Cheng Y., Zhang H., Yao J., Wang X., Xu J., Han Q., Wei G., Huang L., Kang Z. Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen. BMC Plant Biol. 2012;12:96. DOI 10.1186/1471-2229-12-96

21. Clay N.K., Adio A.M., Denoux C., Jander G., Ausubel F.M. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science. 2009;323:95-100. DOI 10.1126/science.1164627

22. Collins N.C., Thordal-Christensen H., Lipka V., Bau S., Kombrink E., Qiu J.L., Huckelhoven R., Stein M., Freialdenhoven A., Somerville S.C., Schulze-Lefert P. SNARE-protein-mediated disease resistance at the plant cell wall. Nature. 2003;425:973-977. DOI 10.1038/nature02076

23. Cunnac S., Lindeberg M., Collmer A. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr. Opin. Microbiol. 2009;12(1):53-60. DOI 10.1016/j.mib.2008.12.003

24. Dangl J.L., Horvath D.M., Staskawicz B.J. Pivoting the plant immune system from dissection to deployment. Science. 2013;341(6147):746- 751. DOI 10.1126/science.1236011

25. de Jonge R., Van Esse H.P., Kombrink A., Shinya T., Desaki Y., Bours R., van der Krol S., Shibuya N., Joosten M.H., Thomma B.P. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science. 2010;329:953-955. DOI 10.1126/science.1190859

26. Del Río J.C., Rencoret J., Prinsen P., Martínez Á.T., Ralph J., Gutiérrez A. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric. Food Chem. 2012;60(23):5922-5935. DOI 10.1021/jf301002n

27. Denness L., Mckenna J.F., Segonzac C., Wormit A., Madhou P., Bennett M., Mansfield J., Zipfel C., Hamann T. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen speciesand jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 2011;156(3):1364-1374. DOI 10.1104/pp.111.175737.

28. Ellis C., Turner J.G. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell. 2001;13(5):1025-1033.

29. Endler A., Persson S. Cellulose synthases and synthesis in Arabidopsis. Mol. Plant. 2011;4(2):199-211. DOI 10.1093/mp/ssq079

30. Fatima U., Senthil-Kumar M. Plant and pathogen nutrient acquisition strategies. Front Plant Sci. 2015;17;6:750. DOI 10.3389/fpls.2015. 00750

31. Ferrari S., Savatin D.V., Sicilia F., Gramegna G., Cervone F., Lorenzo G.D. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 2013;4:49. DOI 10.3389/fpls.2013.00049

32. Funnell-Harris D.L., Pedersen J.F., Sattler S.E. Alteration in lignin biosynthesis restricts growth of Fusarium spp. in brown midrib sorghum. Phytopathology. 2010;100(7):671-681. DOI 10.1094/PHYTO-100-7-0671

33. Furman-Matarasso N., Cohen E., Du Q., Chejanovsky N., Hanania U., Avni A. A point mutation in the ethylene-inducing xylanase elicitor inhibits the beta-1-4-endoxylanase activity but not the elicitation activity. Plant Physiol. 1999;121(2):345-351.

34. Furukawa T., Inagaki H., Takai R., Hirai H., Che F.S. Two distinct EFTu epitopes induce immune responses in rice and Arabidopsis. Mol. Plant Microbe Interact. 2013;27(2):113-124. DOI 10.1094/MPMI-10-13-0304-R

35. Galletti R., De Lorenzo G., Ferrari S. Host-derived signals activate plant innate immunity. Plant Signal. Behav. 2009;4:33-34.

36. Hadwiger L.A. Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci. 2013;208:42-49. DOI 10.1016/j.plantsci. 2013.03.007

37. Hamann T. Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms. Front. Plant Sci. 2012;3:77. DOI 10.3389/fpls.2012.00077

38. Hernandez-Blanco C., Feng D.X., Hu J., Sanchez-Vallet A., Deslandes L., Llorente F., Berrocal-Lobo M., Keller H., Barlet X., Sán chez-Rodríguez C., Anderson L.K., Somerville S., Marco Y., Molina A. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell. 2007;19(3):890-903. DOI 10.1105/tpc.106.048058

39. Hoogkamp T., Chen W.Q., Niks R. Specificity of prehaustorial resistance to Puccinia hordei and to two inappropriate rust fungi in barley. Phytopathology. 1998;88(8):856-861. DOI 10.1094/PHYTO.1998.88.8.856

40. Ikegawa T., Mayama S., Nakayashiki H., Kato H. Accumulation of diferulic acid during the hypersensitive response of oat leaves to Puccinia coronate f. sp. avenae and its role in the resistance of oat tissues to cell wall degrading enzymes. Physiol. Mol. Plant Pathol. 1996;48(4):245-256. DOI 10.1006/pmpp.1996.0021

41. Jafary H., Albertazzi G., Marcel T.C., Niks R.E. High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics. 2008;178(4):2327-2339. DOI 10.1534/genetics.107.077552

42. Jones J.D.G., Dangl J.L. The plant immune system. Nature. 2006; 444(7117):323-329. DOI 10.1038/nature05286

43. Juge N. Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci. 2006;11(7):359-367. DOI 10.1016/j.tplants.2006.05.006

44. Kofalvi S.A., Nassuth A. Influence of wheat streak mosaic virus infection on phenylpropanoid metabolism and the accumulation of phenolics and lignin in wheat. Physiol. Mol. Plant Pathol. 1995;47(6):365-377. DOI 10.1006/pmpp.1995.1065

45. König S., Feussner K., Kaever A., Landesfeind M., Thurow C., Karlovsky P., Gatz C., Polle A., Feussner I. Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytol. 2014;202(3):823-837. DOI 10.1111/ nph.12709

46. Kumar M., Turner S. Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry. 2015;112:91-99. DOI 10.1016/j.phytochem.2014.07.009

47. Lacombe S., Rougon-Cardoso A., Sherwood E., Peeters N., Dahlbeck D., Van Esse H.P., Smoker M., Rallapalli G., Thomma B.P., Staskawicz B., Jones J.D., Zipfel C. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 2010;28(4):365-369. DOI 10.1038/nbt.1613

48. Lee W.S., Rudd J.J., Hammond-Kosack K.E., Kanyuka K. Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol. Plant Microbe Interact. 2014;27(3):236-243. DOI 10.1094/MPMI-07-13-0201-R

49. Li H., Goodwin P.H., Han Q., Huang L., Kang Z. Microscopy and proteomic analysis of the non-host resistance of Oryza sativa to the wheat leaf rust fungus, Puccinia triticina f. sp. tritici. Plant Cell Rep. 2012;31(4):637-650. DOI 10.1007/s00299-011-1181-0

50. Lionetti V. PECTOPLATE: the simultaneous phenotyping of pectin methylesterases, pectinases, and oligogalacturonides in plants during biotic stresses. Front Plant Sci. 2015;6:331. DOI 10.3389/fpls.2015.00331

51. Liu T., Liu Z., Song C., Hu Y., Han Z., She J., Fan F., Wang J., Jin C., Chang J., Zhou J.M., Chai J. Chitin-induced dimerization activates a plant immune receptor. Science. 2012;336(6085):1160-1164. DOI 10.1126/science

52. Maher E.A., Bate N.J., Ni W., Elkind Y., Dixon R.A., Lamb C.J. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc. Natl Acad. Sci. USA. 1994;91(16):7802-7806.

53. Malinovsky F.G., Fangel J.U., Willats W.G. The role of the cell wall in plant immunity. Front Plant Sci. 2014;5:178. DOI 10.3389/fpls.2014.00178

54. Manabe Y., Nafisi M., Verhertbruggen Y., Orfila C., Gille S., Rautengarten C., Cherk C., Marcus S.E., Somerville S., Pauly M., Knox J. P., Sakuragi Y., Scheller H.V. Loss-of-function mutation of reduced wall acetylation 2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea. Plant Physiol. 2011;155(3):1068-1078. DOI 10.1104/pp.110.168989

55. Maury S., Delaunay A., Mesnard F., Cronier D., Chabbert B., Geoffroy P., Legrand M. O-methyltransferase(s)-suppressed plants produce lower amounts of phenolic vir inducers and are less susceptible to Agrobacterium tumefaciens infection. Planta. 2010;232(4):975- 986. DOI 10.1007/s00425-010-1230-x

56. Mellersh D.G., Heath M.C. An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Mol. Plant Microbe Interact. 2003;16(5):398-404.

57. Menden B., Kohlhoff M., Moerschbacher B.M. Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochemistry. 2007;68(4):513-520. DOI 10.1016/j.phytochem. 2006.11.011

58. Miedes E., Vanholme R Boerjan W Molina A. The role of the secondary cell wall in plant resistance to pathogens. Front Plant Sci. 2014;5:358. DOI 10.3389/fpls.2014.00358

59. Moscetti I., Tundo S., Janni M., Sella L., Gazzetti K., Tauzin A., Giardina T., Masci S., Favaron F., D’Ovidio R. Constitutive expression of the xylanase inhibitor TAXI-III delays fusarium head blight symptoms in durum wheat transgenic plants. Mol. Plant Microbe Interact. 2013;26(12):1464-1472. DOI 10.1094/MPMI-04-13-0121-R

60. Mysore K.S., Ryu C.M. Nonhost resistance: how much do we know? Trends Plant Sci. 2004;9(2):97-104. DOI 10.1016/j.tplants.2003.12.005

61. Nicaise V., Roux M., Zipfel C. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol. 2009;150(4):1638-1647. DOI 10.1104/pp.109.139709

62. Niks R. Comparative histology of partial resistance and the nonhost reaction to leaf rust pathogens in barley and wheat seedlings. Phytopathology. 1983;73:60-64.

63. Noda J., Brito N., González C. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol. 2010;10:38. DOI 10.1186/1471-2229-10-38

64. Nurnberger T., Lipka V. Non-host resistance in plants: new insights into an old phenomenon. Mol. Plant. Pathol. 2005;6(3):335-345. DOI 10.1111/j.1364-3703.2005.00279.x

65. Parrott D.L., Anderson A.J., Carman J.G. Agrobacterium induces plant cell death in wheat (Triticum aestivum L.). Physiol. Mol. Plant Pathol. 2002;60(2):59-69. DOI 10.1006/pmpp.2002.0378

66. Pauly M., Gille S., Liu L.F., Mansoori N., De Souza A., Schultink A., Xiong G. Hemicellulose biosynthesis. Planta. 2013;238(4):627-642. DOI 10.1007/s00425-013-1921-1

67. Pogorelko G., Lionetti V., Bellincampi D., Zabotina O. Cell wall integrity: targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. Plant Signal Behav. 2013;8: e25435. DOI 10.4161/psb.25435

68. Prabhu S.A., Wagenknecht M., Melvin P., Gnanesh Kumar B.S., Veena M., Shailasree S., Moerschbacher B.M., Kini K.R. Immuno-affinity purification of PglPGIP1, a polygalacturonase-inhibitor protein from pearl millet: studies on its inhibition of fungal polygalacturonases and role in resistance against the downy mildew pathogen. Mol. Biol. Rep. 2015;42(6):1123-1138. DOI 10.1007/s11033-015-3850-5

69. Prats E., Martinez F., Rojas-Molina M., Rubiales D. Differential effects of phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase, and energetic metabolism inhibition on resistance of appropriate host and nonhost cereal-rust interactions. Phytopathology. 2007;97(12):1578-1583. DOI 10.1094/PHYTO-97-12-1578

70. Romero D., Rivera M.E., Cazorla F.M., Codina J.C., Fernández-Ortuño D., Torés J.A., Pérez-García A., de Vicente A. Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon-powdery mildew (Podosphaera fusca) interactions. J. Plant Physiol. 2008;165(18):1895-1905. DOI 10.1016/j.jplph.2008.04.020

71. Ron M., Avni A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell. 2004;16(6):1604-1615. DOI 10.1105/tpc.022475

72. Rudd J.J., Kanyuka K., Hassani-Pak K., Derbyshire M., Andongabo A., Devonshire J., Lysenko A., Saqi M., Desai N.M., Powers S.J., Hooper J., Ambroso L., Bharti A., Farmer A., Hammond-Kosack K.E., Dietrich R.A., Courbot M. Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiol. 2015;167(3):1158-1185. DOI 10.1104/pp.114.255927

73. San Clemente H., Jamet E. WallProtDB, a database resource for plant cell wall proteomics. Plant Methods. 2015;11(1):2. DOI 10.1186/s13007-015-0045-y

74. Sanchez-Vallet A., Saleem-Batcha R., Kombrink A., Hansen G., Valkenburg D.J., Thomma B.P., Mesters J.R. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. Elife. 2013;2:e00790. DOI 10.7554/eLife.00790

75. Sattler S.E., Funnell-Harris D.L. Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens? Front. Plant Sci. 2013;4:70. DOI 10.3389/fpls.2013.00070

76. Sattler S.E., Saathoff A.J., Haas E.J., Palmer N.A., Funnell-Harris D.L., Sarath G., Pedersen J.F. A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib 6 phenotype. Plant Physiol. 2009;150(2):584-595. DOI 10.1104/ pp.109.136408

77. Scheller H.V., Ulvskov P. Hemicelluloses. Annu. Rev. Plant Biol. 2010;61:263-289. DOI 10.1146/annurev-arplant-042809-112315

78. Schoonbeek H.J., Wang H.H., Stefanato F.L., Craze M., Bowden S., Wallington E., Zipfel C., Ridout C.J. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol. 2015;206(2):606-613. DOI 10.1111/nph.13356

79. Sella L., Gazzetti K., Faoro F., Odorizzi S., D’Ovidio R., Schafer W., Favaron F. A Fusarium graminearum xylanase expressed during wheat infection is a necrotizing factor but is not essential for virulence. Plant Physiol. Biochem. 2013;64:1-10. DOI 10.1016/j.plaphy. 2012.12.008

80. Senthil-Kumar M., Mysore K.S. Non host resistance against bacterial pathogens: retrospectives and prospects. Annu. Rev. Phytopathol. 2013;51:407-427. DOI 10.1146/annurev-phyto-082712-102319

81. Shadle G.L., Wesley S.W., Korth K.L., Chen F., Lamb C., Dixon R.A. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of l-phenylalanine ammonia-lyase. Phytochemistry 2003;64(1):153-161. DOI 10.1016/S0031-9422(03)00151-1

82. Shafiei R., Hang C., Kang J.G., Loake G.J. Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Mol. Plant Pathol. 2007;8(6):773- 784. DOI 10.1111/j.1364-3703.2007.00431.x

83. Shi H., Liu Z., Zhu L., Zhang C., Chen Y., Zhou Y., Li F., Li X. Overexpression of cotton (Gossypium hirsutum) dirigent 1 gene enhances lignification that blocks the spread of Verticillium dahlia. Acta Biochim.Biophys. Sin. 2012;44(7):555-564. DOI 10.1093/abbs/gms035

84. Shimizu T., Nakano T., Takamizawa D., Desaki Y., Ishii-Minami N., Nishizawa Y., Minami E., Okada K., Yamane H., Kaku H., Shibuya N. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 2010;64(2):204-214. DOI 10.1111/j.1365-313X.2010.04324.x

85. Shinya T., Motoyama N., Ikeda A., Wada M., Kamiya K., Hayafune M., Kaku H., Shibuya N. Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol. 2012;53(10):1696-1706. DOI 10.1093/pcp/pcs113

86. Smirnova O.G., Ibragimova S.S., Kochetov A.V. Simple database to select promoters for plant transgenesis. Transgenic Res. 2012;21(2): 429-437. DOI 10.1007/s11248-011-9538-2

87. Smirnova O.G., Kochetov A.V. Promoters of plant genes responsive to pathogen invasion. Russ. J. Genet.: Applied Res. 2015;5(3):254-261. DOI: 10.1134/S2079059715030181

88. Smith A.H., Gill W.M., Pinkard E.A., Mohammed C.L. Anatomical and histochemical defence responses induced in juvenile leaves of Eucalyptus globulus and Eucalyptus nitens by Mycosphaerella infection. For. Pathol. 2007;37:361-373. DOI 10.1111/j.1439- 0329.2007.00502.x

89. Szabo L.J., Bushnell W.R. Hidden robbers: the role of fungal haustoria in parasitism of plants. Proc. Natl Acad. Sci. USA. 2001;98(14):7654- 7765. DOI 10.1073/pnas.151262398

90. Takken F.L., Thomas C.M., Joosten M.H., Golstein C., Westerink N., Hille J., Nijkamp H.J., De Wit P.J., Jones J.D. A second gene at the tomato Cf-4 locus confers resistance to Cladosporium fulvum through recognition of a novel avirulence determinant. Plant J. 1999;20(3):279-288. DOI 10.1046/j.1365-313X.1999.00601.x

91. Trdá L., Boutrot F., Claverie J., Brulé D., Dorey S., Poinssot B. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci. 2015;6:219. DOI 10.3389/fpls.2015.00219

92. Underwood W. The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci. 2012;3:85. DOI 10.3389/fpls.2012.00085

93. van den Burg H.A., Harrison S.J., Joosten M.H., Vervoort J., De Wit P.J. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol. Plant Microbe Interact. 2006;19(12):1420-1430.

94. van Esse H.P., Bolton M.D., Stergiopoulos I., de Wit P.J., Thomma B.P. The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Mol. Plant Microbe Interact. 2007;20(8):1092-1101.

95. Voigt C.A. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front Plant Sci. 2014;5:168. DOI 10.3389/fpls.2014.00168

96. Wang K., Senthil-Kumar M., Ryu C.M., Kang L., Mysore K.S. Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol. 2012;158(4):1789-1802. DOI 10.1104/pp.111.189217

97. Way H.M., Kazan K., Mitter N., Goulter K.C., Birch R.G., Manners J. M. Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiol. Mol. Plant Pathol. 2002;60(6):275-282. DOI 10.1006/pmpp.2002.0407

98. Wiesel L., Newton A.C., Elliott I., Booty D., Gilroy E.M., Birch P.R., Hein I. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Front Plant Sci. 2014;5:655. DOI 10.3389/fpls.2014.00655

99. Wróbel-Kwiatkowska M., Starzycki M., Zebrowski J., Oszmiañski J., Szopa J. Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties. J. Biotechnol. 2007;128(4):919-934. DOI 10.1016/j.jbiotec.2006.12.030

100. Xu L., Zhu L., Tu L., Liu L., Yuan D., Jin L., Long L., Zhang X. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J. Exp. Bot. 2011;62: 5607-5621.

101. Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014; 35(7):345-351. DOI 10.1016/j.it.2014.05.004

102. Zhang H., Wang C., Cheng Y., Wang X., Li F., Han Q., Xu J., Chen X., Huang L., Wei G., Kang Z. Histological and molecular studies of the non-host interaction between wheat and Uromyces fabae. Planta. 2011;234(5):979-991. DOI 10.1007/s00425-011-1453-5

103. Zhao J., Buchwaldt L., Rimmer S.R., Sharpe A., Mcgregor L., Bekkoui D., Heqedus D. Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum. ol. Plant Pathol. 2009;10(5):635-649. DOI 10.1111/j.1364-3703. 2009.00558.x


Просмотров: 334


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)