Влияние димерных бисбензимидазолов на активность ферментов репарации ДНК тирозил-ДНК-фосфодиэстераз 1 и 2 и поли(АДФ-рибоза)полимераз 1 и 2
https://doi.org/10.18699/vjgb-25-114
Аннотация
Онкологические заболевания остаются одной из главных причин патологической смертности в мире, что определяет дизайн противораковых препаратов как ключевое направление медицинской химии. Комбинация ингибиторов ферментов репарации ДНК с ингибиторами топоизомераз – перспективный подход для усиления противоракового действия и снижения токсичности химиотерапии. Особый интерес представляют узкобороздочные ДНК-лиганды, способные эффективно ингибировать ДНК-зависимые ферменты, обладая при этом низкой токсичностью и мутагенностью. Ряд исследовательских групп, включая нашу, разрабатывает ингибиторы ферментов репарации ДНК, действующие одновременно на несколько взаимосвязанных мишеней {тирозил-ДНК-фосфодиэстеразы 1/2 (TDP1/TDP2), поли(АДФ-рибоза)полимераза 1 (PARP1)/TDP1, топоизомераза 1 (ТОР1)/TDP1}. Такие бифункциональные ингибиторы призваны решить проблему резистентности опухолевых клеток к известным химиопрепаратам и повысить эффективность последних. В настоящем исследовании представлены данные скрининга ингибирующей активности 22 узкобороздочных лигандов, взаимодействующих с ДНК, – бис- и трисбензимидазолов – в отношении четырех ферментов репарации: TDP1, TDP2, PARP1 и PARP2. Изучены четыре серии димерных соединений и их мономерных единиц. Показана разница в ингибирующей активности димерных бисбензимидазолов в зависимости от структуры соединения и фермента. Мономерные и димерные бисбензимидазолы эффективно ингибируют активность TDP1 в микромолярном и субмикромолярном диапазоне IC50 (концентрация полумаксимального ингибирования). Димерные соединения групп DB2Pу(n) и DB3P(n) проявили более значительную ингибирующую активность в отношении ферментативной реакции с участием TDP1 по сравнению с мономерами, входящими в их состав. Для всех исследованных соединений была показана низкая ингибирующая способность в отношении остальных трех ферментов репарации ДНК, т. е. наблюдается их специфическое воздействие именно на TDP1. Следует отметить, что в данной работе в экспериментах с TDP1 и TDP2 было исключено действие исследуемых соединений как узкобороздочных лигандов, связывающихся с ДНК, и исследовано их непосредственное воздействие на фермент. По результатам молекулярного докинга можно предположить возможность прямого взаимодействия изучаемых соединений с активным центром TDP1. Согласно результатам моделирования, ингибиторы располагаются в области связывания 3’-конца ДНК с активным центром TDP1 и могут образовывать устойчивые связи с каталитически значимыми остатками активного центра His263 и His493. Эти взаимодействия, вероятно, обеспечивают высокую ингибирующую активность соединений, наблюдаемую в биохимических экспериментах.
Об авторах
Н. С. ДырхееваРоссия
Новосибирск
И. А. Чернышова
Россия
Новосибирск
А. Ф. Арутюнян
Россия
Москва
А. Л. Захаренко
Россия
Новосибирск
М. М. Кутузов
Россия
Новосибирск
К. Н. Науменко
Россия
Новосибирск
А. С. Вензель
Россия
Новосибирск
В. А. Иванисенко
Россия
Новосибирск
C. М. Деев
Россия
Москва
А. Л. Жузе
Россия
Москва
О. И. Лаврик
Россия
Новосибирск
Список литературы
1. Alagoz M., Wells O.S., El-Khamisy S.F. TDP1 deficiency sensitizes human cells to base damage via distinct topoisomerase I and PARP mechanisms with potential applications for cancer therapy. Nucleic Acids Res. 2014;42(5):3089-3103. doi: 10.1093/nar/gkt1260
2. Alford R.F., LeaverFay A., Jeliazkov J.R., O’Meara M.J., DiMaio F.P., Park H., Shapovalov M.V., … Das R., Baker D., Kuhlman B., Kortemme T., Gray J.J. The Rosetta allatom energy function for macromolecular modeling and design. J Chem Theory Comput. 2017; 13(6):3031-3048. doi: 10.1021/acs.jctc.7b00125
3. Allen W.J., Balius T.E., Mukherjee S., Brozell S.R., Moustakas D.T., Lang P.T., Case D.A., Kuntz I.D., Rizzo R.C. DOCK 6: impact of new features and current docking performance. J Comput Chem. 2015;36(15):1132-1156. doi: 10.1002/jcc.23905
4. Arutyunyan A.F., Kostyukov A.A., Korolev S.P., Gottikh M.B., Kaluzh ny D.N., Susova O.Yu., Zhuze A.L. DNA sequence-specific ligands. 19. Synthesis, spectral properties, virological and biochemical studies of DB3(n) fluorescent dimeric trisbenzimidazoles. Mol Biol. 2023a;57(3):512-521. doi: 10.1134/s0026893323030020
5. Arutyunyan A.F., Kostyukov A.A., Lushpa V.A., Mineev K.S., Korolev S.P., Gottikh M.B., Klimova R.R., Kushch A.A., Kalabina K.V., Susova O.Yu., Zhuze A.L. DNA sequence-specific ligands. XX. Synthesis, spectral properties, virological and biochemical studies of fluorescent dimeric trisbenzimidazoles DB3P(n). Med Chem Res. 2023b;32(3):587-599. doi: 10.1007/s00044-023-03017-x
6. Chaudhury S., Lyskov S., Gray J.J. PyRosetta: a scriptbased interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics. 2010;26(5):689-691. doi: 10.1093/bioinformatics/btq007
7. Chernyshova I., Vasil’eva I., Moor N., Ivanisenko N., Kutuzov M., Abramova T., Zakharenko A., Lavrik O. Aminomethylmorpholinonucleosides as novel inhibitors of PARP1 and PARP2: experimental and molecular modeling analyses of their selectivity and mechanism of action. Int J Mol Sci. 2024;25(23):12526. doi: 10.3390/ijms252312526
8. Chowdhuri S.P., Das B.B. Top1-PARP1 association and beyond: from DNA topology to break repair. NAR Cancer. 2021;3(1):zcab003. doi: 10.1093/narcan/zcab003
9. Comeaux E.Q., van Waardenburg R.C. Tyrosyl-DNA phosphodiesterase I resolves both naturally and chemically induced DNA adducts and its potential as a therapeutic target. Drug Metab Rev. 2014;46(4):494-507. doi: 10.3109/03602532.2014.971957
10. Conda-Sheridan M., Reddy P.V.N., Morrell A., Cobb B.T., Marchand C., Agama K., Chergui A., Renaud A., Stephen A.G., Bindu L.K., Pommier Y., Cushman M. Synthesis and biological evaluation of indenoisoquinolines that inhibit both tyrosyl-DNA phosphodiesterase I (Tdp1) and topoisomerase I (Top1). J Med Chem. 2013;56(1):182-200. doi: 10.1021/jm3014458
11. Curtin N.J., Szabo C. Poly(ADPribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov. 2020;19(10):711-736. doi: 10.1038/s41573-020-0076-6
12. Das B.B., Huang S.N., Murai J., Rehman I., Amé J.C., Sengupta S., Das S.K., Majumdar P., Zhang H., Biard D., Majumder H.K., Schreiber V., Pommier Y. PARP1-TDP1 coupling for the repair of topoisomerase Iinduced DNA damage. Nucleic Acids Res. 2014;42(7): 4435-4449. doi: 10.1093/nar/gku088
13. Dyrkheeva N., Anarbaev R., Lebedeva N., Kuprushkin M., Kuznetsova A., Kuznetsov N., Rechkunova N., Lavrik O. Human tyrosyl DNA phosphodiesterase 1 possesses transphosphooligonucleotidation activity with primary alcohols. Front Cell Dev Biol. 2020;8: 604732. doi: 10.3389/fcell.2020.604732
14. Dyrkheeva N.S., Filimonov A.S., Luzina O.A., Orlova K.A., Chernyshova I.A., Kornienko T.E., Malakhova A.A., … Burakova E.A., Stetsenko D.A., Zakian S.M., Salakhutdinov N.F., Lavrik O.I. New hybrid compounds combining fragments of usnic acid and thioether are inhibitors of human enzymes TDP1, TDP2 and PARP1. Int J Mol Sci. 2021;22(21):11336. doi: 10.3390/ijms222111336
15. Eastman P., Galvelis R., Peláez R.P., Abreu C.R.A., Farr S.E., Gallicchio E., Gorenko A., … Wang Y., Zhang I., Chodera J.D., De Fabritiis G., Markland T.E. OpenMM 8: molecular dynamics simulation with machine learning potentials. J Phys Chem B. 2024;128(1):109-116. doi: 10.1021/acs.jpcb.3c06662
16. Elsayed W., El-Shafie L., Hassan M.K., Farag M.A., El-Khamisy S.F. Isoeugenol is a selective potentiator of camptothecin cytotoxicity in vertebrate cells lacking TDP1. Sci Rep. 2016;6(1):26626. doi: 10.1038/srep26626
17. Fam H.K., Walton C., Mitra S.A., Chowdhury M., Osborne N., Choi K., Sun G., … Aparicio S., Triche T.J., Bond M., Pallen C.J., Boerkoel C.F. TDP1 and PARP1 deficiency are cytotoxic to rhabdomyosarcoma cells. Mol Cancer Res. 2013;11(10):1179-1192. doi: 10.1158/1541-7786.mcr-12-0575
18. Flörkemeier I., Hillmann J.S., Weimer J.P., Hildebrandt J., Hedemann N., Rogmans C., Dempfle A., Arnold N., Clement B., Bauerschlag D.O. Combined PARP and dual topoisomerase inhibition potentiates genome instability and cell death in ovarian cancer. Int J Mol Sci. 2022;23(18):10503. doi: 10.3390/ijms231810503
19. Hoch N.C., Polo L.M. ADP-ribosylation: from molecular mechanisms to human disease. Genet Mol Biol. 2019;43(Suppl.1):e20190075. doi: 10.1590/1678-4685-GMB-2019-0075
20. Hu D.X., Tang W.-L., Zhang Y., Yang H., Wang W., Agama K., Pommier Y., An L.-K. Synthesis of methoxy-, methylenedioxy-, hydroxy-, and halo-substituted benzophenanthridinone derivatives as DNA topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors and their biological activity for drugresistant cancer. J Med Chem. 2021;64(11):7617-7629. doi: 10.1021/acs.jmedchem.1c00318
21. Ivanov A.A., Koval V.S., Susova O.Yu., Salyanov V.I., Oleinikov V.A., Stomakhin A.A., Shalginskikh N.A., Kvasha M.A., Kirsanova O.V., Gromova E.S., Zhuze A.L. DNA specific fluorescent symmetric dimeric bisbenzimidazoles DBP(n): the synthesis, spectral properties, and biological activity. Bioorg Med Chem Lett. 2015;25(13):2634-2638. doi: 10.1016/j.bmcl.2015.04.087
22. Jing C.-B., Fu C., Prutsch N., Wang M., He S., Look A.T. Synthetic lethal targeting of TET2mutant hematopoietic stem and progenitor cells (HSPCs) with TOP1targeted drugs and PARP1 inhibitors. Leukemia. 2020;34(11):2992-3006. doi: 10.1038/s41375-020-09275
23. Johannes J.W., Balazs A.Y.S., Barratt D., Bista M., Chuba M.D., Cosulich S., Critchlow S.E., … Xue L., Yao T., Zhang K., Zhang A.X., Zheng X. Discovery of 6-Fluoro-5-{4-[(5-fluoro-2-methyl-3-oxo-3,4-dihydroquinoxalin-6-yl)methyl]piperazin-1-yl}-Nmethylpyridine-2-carboxamide (AZD9574): a CNS-penetrant, PARP1-se lective inhibitor. J Med Chem. 2024;67(24):21717-21728. doi: 10.1021/acs.jmedchem.4c01725
24. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., … Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583-589. doi: 10.1038/s41586-021-03819-2
25. Jurrus E., Engel D., Star K., Monson K., Brandi J., Felberg L.E., Brookes D.H., … Krasny R., Wei G., Holst M.J., McCammon J.A., Baker N.A. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018;27(1):112-128. doi: 10.1002/pro.3280
26. Kawale A.S., Povirk L.F. Tyrosyl-DNA phosphodiesterases: rescuing the genome from the risks of relaxation. Nucleic Acids Res. 2018; 46(2):520-537. doi: 10.1093/nar/gkx1219
27. Kim D.-S., Camacho C.V., Kraus W.L. Alternate therapeutic pathways for PARP inhibitors and potential mechanisms of resistance. Exp Mol Med. 2021;53(1):42-51. doi: 10.1038/s12276-021-00557-3
28. Kim J.W., Min A., Im S.A., Jang H., Kim Y.J., Kim H.J., Lee K.-H., Kim T.-Y., Lee K.W., Oh D.-Y., Kim J.-H., Bang Y.-J. TDP1 and TOP1 modulation in olaparibresistant cancer determines the efficacy of subsequent chemotherapy. Cancers. 2020;12(2):334. doi: 10.3390/cancers12020334
29. Kornienko T.E., Chepanova A.A., Zakharenko A.L., Filimonov A.S., Luzina O.A., Dyrkheeva N.S., Nikolin V.P., Popova N.A., Salakhutdinov N.F., Lavrik O.I. Enhancement of the antitumor and antimeta static effect of topotecan and normalization of blood counts in mice with Lewis carcinoma by Tdp1 inhibitors – new usnic acid derivatives. Int J Mol Sci. 2024;25(2):1210. doi: 10.3390/ijms25021210
30. Lavrik O.I. PARPs’ impact on base excision DNA repair. DNA Repair. 2020;93:102911. doi: 10.1016/j.dnarep.2020.102911
31. Lebedeva N.A., Anarbaev R.O., Sukhanova M., Vasil’eva I.A., Rechkunova N.I., Lavrik O.I. Poly(ADPribose)polymerase 1 stimulates the APsite cleavage activity of tyrosylDNA phosphodiesterase 1. Biosci Rep. 2015;35(4):e00230. doi: 10.1042/BSR20140192
32. Marchand C., Abdelmalak M., Kankanala J., Huang S.-Y., Kiselev E., Fesen K., Kurahashi K., Sasanuma H., Takeda S., Aihara H., Wang Z., Pommier Y. Deazaflavin inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2) specific for the human enzyme and active against cellular TDP2. ACS Chem Biol. 2016;11(7):1925-1933. doi: 10.1021/acschembio.5b01047
33. Matsuno Y., Hyodo M., Fujimori H., Shimizu A., Yoshioka K. Sensitization of cancer cells to radiation and topoisomerase I inhibitor camptothecin using inhibitors of PARP and other signaling molecules. Cancers. 2018;10(10):364. doi: 10.3390/cancers10100364
34. Mirdita M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679-682. doi: 10.1038/s41592-022-01488-1
35. Moor N.A., Vasil’eva I.A., Anarbaev R.O., Antson A.A., Lavrik O.I. Quantitative characterization of protein-protein complexes involved in base excision DNA repair. Nucleic Acids Res. 2015;43(12):6009-6022. doi: 10.1093/nar/gkv569
36. Moretti R., Bender B.J., Allison B., Meiler J. Rosetta and the design of ligand binding sites. In: Stoddard B. (Ed.) Computational Design of Ligand Binding Proteins. Methods in Molecular Biology. Vol. 1414. New York: Humana Press, 2016;47-62. doi: 10.1007/978-1-4939-3569-7_4
37. Murai J., Marchand C., Shahane S.A., Sun H., Huang R., Zhang Y., Chergui A., Ji J., Doroshow J.H., Jadhav A., Takeda S., Xia M., Pommier Y. Identification of novel PARP inhibitors using a cell-based TDP1 inhibitory assay in a quantitative high-throughput screening platform. DNA Repair. 2014;21:177-182. doi: 10.1016/j.dnarep.2014.03.006
38. Neudachina L., Lakiza N. Physico-Chemical Principles of the Use of Coordination Compounds. Ekaterinburg, 2014 (in Russian)
39. Nguyen T.X., Abdelmalak M., Marchand C., Agama K., Pommier Y., Cushman M. Synthesis and biological evaluation of nitrated 7-, 8-, 9-, and 10-hydroxyindenoisoquinolines as potential dual topoisomerase I (Top1)–tyrosylDNA phosphodiesterase I (TDP1) inhibitors. J Med Chem. 2015;58(7):3188-3208. doi: 10.1021/acs.jmedchem.5b00136
40. O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: an open chemical toolbox. J Cheminform. 2011;3(1):33. doi: 10.1186/1758-2946-3-33
41. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-1612. doi: 10.1002/jcc.20084
42. Pommier Y., Leo E., Zhang H., Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17(5):421-433. doi: 10.1016/j.chembiol.2010.04.012
43. Pommier Y., Huang S.N., Gao R., Das B.B., Murai J., Marchand C. TyrosylDNAphosphodiesterases (TDP1 and TDP2). DNA Repair. 2014;19:114129. doi: 10.1016/j.dnarep.2014.03.020
44. Quiroga R., Villarreal M.A. Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS One. 2016;11(5):e0155183. doi: 10.1371/journal.pone.0155183
45. Ray Chaudhuri A., Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18(10):610-621. doi: 10.1038/nrm.2017.53
46. Salentin S., Schreiber S., Haupt V.J., Adasme M.F., Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015;43(W1):W443-W447. doi: 10.1093/nar/gkv315
47. Schreiber V., Dantzer F., Ame J.-C., de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 2006; 7(7):517-528. doi: 10.1038/nrm1963
48. Sherstyuk Y.V., Ivanisenko N.V., Zakharenko A.L., Sukhanova M.V., Peshkov R.Y., Eltsov I.V., Kutuzov M.M., Kurgina T.A., Belousova E.A., Ivanisenko V.A., Lavrik O.I., Silnikov V.N., Abramova T.V. Design, synthesis and molecular modeling study of conjugates of ADP and morpholino nucleosides as a novel class of inhibitors of PARP-1, PARP-2 and PARP-3. Int J Mol Sci. 2019;21(1):214. doi: 10.3390/ijms21010214
49. Smith L.M., Willmore E., Austin C.A., Curtin N.J. The novel poly(ADPribose) polymerase inhibitor, AG14361, sensitizes cells to topoisomerase I poisons by increasing the persistence of DNA strand breaks. Clin Cancer Res. 2005;11(23):8449-8457. doi: 10.1158/1078-0432.ccr-05-1224
50. Sukhanova M.V., Khodyreva S.N., Lavrik O.I. Poly(ADPribose) polymerase1 inhibits stranddisplacement synthesis of DNA catalyzed by DNA polymerase β. Biochemistry (Moscow). 2004;69(5):558-568. doi: 10.1023/b:biry.0000029855.68502.fa
51. Susova О.Y., Kаrshieva S.S., Kostyukov А.А., Мoiseevа N.I., Zaytseva Е.А., Kаlabina K.V., Zusinaite Е., Gildemann K., Smirnov N.М., Аrutyunyan А.F., Zhuze А.L. Dimeric bisbenzimidazolepyrroles DB2Py(n) – AT-site-specific ligands: synthesis, physicochemical analysis, and biological activity. Acta Naturae. 2024;16(1):86-100. doi: 10.32607/actanaturae.27327
52. Szanto M., Yelamos J., Bai P. Specific and shared biological functions of PARP2 – is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med. 2024;26:e13. doi: 10.1017/erm.2024.14
53. Wang P., Elsayed M.S.A., Plescia C.B., Ravji A., Redon C.E., Kiselev E., Marchand C., Zeleznik O., Agama K., Pommier Y., Cushman M. Synthesis and biological evaluation of the first triple inhibitors of human topoisomerase 1, tyrosylDNA phosphodiesterase 1 (Tdp1), and tyrosylDNA phosphodiesterase 2 (Tdp2). J Med Chem. 2017;60(8):3275-3288. doi: 10.1021/acs.jmedchem.6b01565
54. Wang R., Lai L., Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des. 2002;16(1):11-26. doi: 10.1023/a:1016357811882
55. Yang H., Zhu X.-Q., Wang W., Chen Y., Hu Z., Zhang Y., Hu D.X., Yu L.-M., Agama K., Pommier Y., An L.-K. The synthesis of furoquinolinedione and isoxazoloquinolinedione derivatives as selective TyrosylDNA phosphodiesterase 2 (TDP2) inhibitors. Bioorg Chem. 2021;111:104881. doi: 10.1016/j.bioorg.2021.104881
56. Yang H., Qin C., Wu M., Wang F., Wang W., Agama K., Pommier Y., Hu D., An L. Synthesis and biological activities of 11‐ and 12‐substituted benzophenanthridinone derivatives as DNA topoisomerase IB and tyrosyl‐DNA phosphodiesterase 1 inhibitors. ChemMedChem. 2023;18(10):e202200593. doi: 10.1002/cmdc.202200593
57. Zakharenko A., Khomenko T., Zhukova S., Koval O., Zakharova O., Anarbaev R., Lebedeva N., Korchagina D., Komarova N., Vasiliev V., Reynisson J., Volcho K., Salakhutdinov N., Lavrik O. Synthesis and biological evaluation of novel tyrosylDNA phosphodiesterase 1 inhibitors with a benzopentathiepine moiety. Bioorg Med Chem. 2015;23(9):2044-2052. doi: 10.1016/j.bmc.2015.03.020
58. Zakharenko A.L., Luzina O.A., Chepanova A.A., Dyrkheeva N.S., Salakhutdinov N.F., Lavrik O.I. Natural products and their derivatives as inhibitors of the DNA repair enzyme tyrosylDNA phosphodiesterase 1. Int J Mol Sci. 2023;24(6):5781. doi: 10.3390/ijms24065781
59. Zeng Z., Sharma A., Ju L., Murai J., Umans L., Vermeire L., Pom mier Y., Takeda S., Huylebroeck D., Caldecott K.W., El-Khamisy S.F. TDP2 promotes repair of topoisomerase Imediated DNA damage in the absence of TDP1. Nucleic Acids Res. 2012;40(17):8371-8380. doi: 10.1093/nar/gks622
60. Zhang M., Wang Z., Su Y., Yan W., Ouyang Y., Fan Y., Huang Y., Yang H. TDP1 represents a promising therapeutic target for overcoming tumor resistance to chemotherapeutic agents: progress and potential. Bioorg Chem. 2025;154:108072. doi: 10.1016/j.bioorg.2024.108072
61. Zhang X.-R., Wang H.-W., Tang W.-L., Zhang Y., Yang H., Hu D.X., Ravji A., Marchand C., Kiselev E., OforiAtta K., Agama K., Pommier Y., An L.-K. Discovery, synthesis, and evaluation of oxynitidine derivatives as dual inhibitors of DNA topoisomerase IB (TOP1) and tyrosylDNA phosphodiesterase 1 (TDP1), and potential antitumor agents. J Med Chem. 2018;61(22):9908-9930. doi: 10.1021/acs.jmedchem.8b00639
62. Zhang Y., He X., Yang H., Liu H., An L. Robustadial A and B from Eucalyptus globulus Labill. and their anticancer activity as selective tyrosyl‐DNA phosphodiesterase 2 inhibitors. Phytotherapy Res. 2021;35(9):5282-5289. doi: 10.1002/ptr.7207
Рецензия
JATS XML






