Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The effect of dimeric bisbenzimidazoles on the activity of DNA repair enzymes TDP1, TDP2, PARP1 and PARP2

https://doi.org/10.18699/vjgb-25-114

Abstract

   Oncological diseases remain a leading cause of pathological mortality worldwide, making the development of anticancer drugs a critical focus in medicinal chemistry. A promising strategy to enhance therapeutic efficacy and reduce chemotherapy-induced toxicity involves the combined inhibition of DNA repair enzymes and topoisomerases. Of particular interest are minor-groove DNA ligands, which exhibit potent inhibition of DNA-dependent enzymes while having low toxicity and mutagenicity. A number of research groups, including ours, are developing inhibitors of DNA repair enzymes that act simultaneously on several targets: tyrosyl-DNA phosphodiesterase 1/2 (TDP1/TDP2), poly(ADP-ribose) polymerase 1 (PARP1)/TDP1, topoisomerase 1 (TOP1)/TDP1. Such bifunctional inhibitors are designed to resolve the problem of tumor cell resistance to known chemotherapy drugs and increase the effectiveness of the latter. In this study, we evaluated the inhibitory activity of 22 minor-groove DNA ligands – bis- and trisbenzimidazoles against four key repair enzymes: TDP1, TDP2, PARP1, and PARP2. Four series of dimeric compounds and their monomeric units were studied. The difference in inhibitory activity of dimeric bisbenzimidazoles depending on the structure of the compound and the enzyme is shown. Our findings reveal distinct structure-activity relationships, with monomeric and dimeric ligands exhibiting potent TDP1 inhibition at micromolar to submicromolar IC50 values (half-maximal inhibitory concentration). Notably, dimeric compounds from the DB2Py(n) and DB3P(n) series demonstrated superior TDP1 inhibition compared to their monomers. In contrast, all tested compounds showed negligible activity against the other three repair enzymes; so, the compounds demonstrate specificity to TDP1. It should be noted that in this work, in the experiments with TDP1 and TDP2, the effect of the tested compounds as narrow-groove ligands binding to DNA was excluded, and their direct effect on the enzyme was investigated. The results of molecular docking suggest the possibility of direct interaction of active compounds with the active center of TDP1. According to the results of modeling, the inhibitors are located in the binding region of the 3’-end of DNA in the active site of TDP1 and could form stable bonds with the catalytically significant TDP1 residues His263 and His493. These interactions probably provide the high inhibitory activity of the compounds observed in biochemical experiments.

About the Authors

N. S. Dyrkheeva
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Россия

Novosibirsk



I. A. Chernyshova
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Россия

Novosibirsk



A. F. Arutyunyan
The Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Россия

Moscow



A. L. Zakharenko
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Россия

Novosibirsk



M. M. Kutuzov
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Россия

Novosibirsk



K. N. Naumenko
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Россия

Novosibirsk



A. S. Venzel
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Россия

Novosibirsk



V. A. Ivanisenko
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Россия

Novosibirsk



S. M. Deyev
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Россия

Moscow



A. L. Zhuze
The Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
Россия

Moscow



O. I. Lavrik
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Россия

Novosibirsk



References

1. Alagoz M., Wells O.S., El-Khamisy S.F. TDP1 deficiency sensitizes human cells to base damage via distinct topoisomerase I and PARP mechanisms with potential applications for cancer therapy. Nucleic Acids Res. 2014;42(5):3089-3103. doi: 10.1093/nar/gkt1260

2. Alford R.F., Leaver­Fay A., Jeliazkov J.R., O’Meara M.J., DiMaio F.P., Park H., Shapovalov M.V., … Das R., Baker D., Kuhlman B., Kortemme T., Gray J.J. The Rosetta all­atom energy function for macromolecular modeling and design. J Chem Theory Comput. 2017; 13(6):3031-3048. doi: 10.1021/acs.jctc.7b00125

3. Allen W.J., Balius T.E., Mukherjee S., Brozell S.R., Moustakas D.T., Lang P.T., Case D.A., Kuntz I.D., Rizzo R.C. DOCK 6: impact of new features and current docking performance. J Comput Chem. 2015;36(15):1132-1156. doi: 10.1002/jcc.23905

4. Arutyunyan A.F., Kostyukov A.A., Korolev S.P., Gottikh M.B., Kaluzh ny D.N., Susova O.Yu., Zhuze A.L. DNA sequence-specific ligands. 19. Synthesis, spectral properties, virological and biochemical studies of DB3(n) fluorescent dimeric trisbenzimidazoles. Mol Biol. 2023a;57(3):512-521. doi: 10.1134/s0026893323030020

5. Arutyunyan A.F., Kostyukov A.A., Lushpa V.A., Mineev K.S., Korolev S.P., Gottikh M.B., Klimova R.R., Kushch A.A., Kalabina K.V., Susova O.Yu., Zhuze A.L. DNA sequence-specific ligands. XX. Syn­thesis, spectral properties, virological and biochemical studies of fluorescent dimeric trisbenzimidazoles DB3P(n). Med Chem Res. 2023b;32(3):587-599. doi: 10.1007/s00044-023-03017-x

6. Chaudhury S., Lyskov S., Gray J.J. PyRosetta: a script­based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics. 2010;26(5):689-691. doi: 10.1093/bioinformatics/btq007

7. Chernyshova I., Vasil’eva I., Moor N., Ivanisenko N., Kutuzov M., Abramova T., Zakharenko A., Lavrik O. Aminomethylmorpholinonucleosides as novel inhibitors of PARP1 and PARP2: experimental and molecular modeling analyses of their selectivity and mechanism of action. Int J Mol Sci. 2024;25(23):12526. doi: 10.3390/ijms252312526

8. Chowdhuri S.P., Das B.B. Top1-PARP1 association and beyond: from DNA topology to break repair. NAR Cancer. 2021;3(1):zcab003. doi: 10.1093/narcan/zcab003

9. Comeaux E.Q., van Waardenburg R.C. Tyrosyl-DNA phosphodiesterase I resolves both naturally and chemically induced DNA adducts and its potential as a therapeutic target. Drug Metab Rev. 2014;46(4):494-507. doi: 10.3109/03602532.2014.971957

10. Conda-Sheridan M., Reddy P.V.N., Morrell A., Cobb B.T., Marchand C., Agama K., Chergui A., Renaud A., Stephen A.G., Bindu L.K., Pom­mier Y., Cushman M. Synthesis and biological evaluation of indenoisoquinolines that inhibit both tyrosyl-DNA phosphodiesterase I (Tdp1) and topoisomerase I (Top1). J Med Chem. 2013;56(1):182-200. doi: 10.1021/jm3014458

11. Curtin N.J., Szabo C. Poly(ADP­ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov. 2020;19(10):711-736. doi: 10.1038/s41573-020-0076-6

12. Das B.B., Huang S.N., Murai J., Rehman I., Amé J.­C., Sengupta S., Das S.K., Majumdar P., Zhang H., Biard D., Majumder H.K., Schreiber V., Pommier Y. PARP1-TDP1 coupling for the repair of topoisomerase I­induced DNA damage. Nucleic Acids Res. 2014;42(7): 4435-4449. doi: 10.1093/nar/gku088

13. Dyrkheeva N., Anarbaev R., Lebedeva N., Kuprushkin M., Kuznetsova A., Kuznetsov N., Rechkunova N., Lavrik O. Human tyrosyl DNA phosphodiesterase 1 possesses transphosphooligonucleotida­tion activity with primary alcohols. Front Cell Dev Biol. 2020;8: 604732. doi: 10.3389/fcell.2020.604732

14. Dyrkheeva N.S., Filimonov A.S., Luzina O.A., Orlova K.A., Chernyshova I.A., Kornienko T.E., Malakhova A.A., … Burakova E.A., Stetsenko D.A., Zakian S.M., Salakhutdinov N.F., Lavrik O.I. New hybrid compounds combining fragments of usnic acid and thioether are inhibitors of human enzymes TDP1, TDP2 and PARP1. Int J Mol Sci. 2021;22(21):11336. doi: 10.3390/ijms222111336

15. Eastman P., Galvelis R., Peláez R.P., Abreu C.R.A., Farr S.E., Gallicchio E., Gorenko A., … Wang Y., Zhang I., Chodera J.D., De Fabritiis G., Markland T.E. OpenMM 8: molecular dynamics simulation with machine learning potentials. J Phys Chem B. 2024;128(1):109-116. doi: 10.1021/acs.jpcb.3c06662

16. Elsayed W., El-Shafie L., Hassan M.K., Farag M.A., El-Khamisy S.F. Isoeugenol is a selective potentiator of camptothecin cytotoxicity in vertebrate cells lacking TDP1. Sci Rep. 2016;6(1):26626. doi: 10.1038/srep26626

17. Fam H.K., Walton C., Mitra S.A., Chowdhury M., Osborne N., Choi K., Sun G., … Aparicio S., Triche T.J., Bond M., Pallen C.J., Boerkoel C.F. TDP1 and PARP1 deficiency are cytotoxic to rhabdomyosarcoma cells. Mol Cancer Res. 2013;11(10):1179-1192. doi: 10.1158/1541-7786.mcr-12-0575

18. Flörkemeier I., Hillmann J.S., Weimer J.P., Hildebrandt J., Hedemann N., Rogmans C., Dempfle A., Arnold N., Clement B., Bauerschlag D.O. Combined PARP and dual topoisomerase inhibition potentiates genome instability and cell death in ovarian cancer. Int J Mol Sci. 2022;23(18):10503. doi: 10.3390/ijms231810503

19. Hoch N.C., Polo L.M. ADP-ribosylation: from molecular mechanisms to human disease. Genet Mol Biol. 2019;43(Suppl.1):e20190075. doi: 10.1590/1678-4685-GMB-2019-0075

20. Hu D.­X., Tang W.-L., Zhang Y., Yang H., Wang W., Agama K., Pommier Y., An L.-K. Synthesis of methoxy-, methylenedioxy-, hydroxy-, and halo-substituted benzophenanthridinone derivatives as DNA topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors and their biological activity for drug­resistant cancer. J Med Chem. 2021;64(11):7617-7629. doi: 10.1021/acs.jmedchem.1c00318

21. Ivanov A.A., Koval V.S., Susova O.Yu., Salyanov V.I., Oleinikov V.A., Stomakhin A.A., Shalginskikh N.A., Kvasha M.A., Kirsanova O.V., Gromova E.S., Zhuze A.L. DNA specific fluorescent symmetric dimeric bisbenzimidazoles DBP(n): the synthesis, spectral properties, and biological activity. Bioorg Med Chem Lett. 2015;25(13):2634-2638. doi: 10.1016/j.bmcl.2015.04.087

22. Jing C.-B., Fu C., Prutsch N., Wang M., He S., Look A.T. Synthetic lethal targeting of TET2­mutant hematopoietic stem and progeni­tor cells (HSPCs) with TOP1­targeted drugs and PARP1 inhibi­tors. Leukemia. 2020;34(11):2992-3006. doi: 10.1038/s41375-020-0927­5

23. Johannes J.W., Balazs A.Y.S., Barratt D., Bista M., Chuba M.D., Cosulich S., Critchlow S.E., … Xue L., Yao T., Zhang K., Zhang A.X., Zheng X. Discovery of 6-Fluoro-5-{4-[(5-fluoro-2-methyl-3-oxo-3,4-dihydroquinoxalin-6-yl)methyl]piperazin-1-yl}-N­methylpyridine-2-carboxamide (AZD9574): a CNS-penetrant, PARP1-se lective inhibitor. J Med Chem. 2024;67(24):21717-21728. doi: 10.1021/acs.jmedchem.4c01725

24. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., … Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583-589. doi: 10.1038/s41586-021-03819-2

25. Jurrus E., Engel D., Star K., Monson K., Brandi J., Felberg L.E., Brookes D.H., … Krasny R., Wei G., Holst M.J., McCammon J.A., Baker N.A. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018;27(1):112-128. doi: 10.1002/pro.3280

26. Kawale A.S., Povirk L.F. Tyrosyl-DNA phosphodiesterases: rescuing the genome from the risks of relaxation. Nucleic Acids Res. 2018; 46(2):520-537. doi: 10.1093/nar/gkx1219

27. Kim D.-S., Camacho C.V., Kraus W.L. Alternate therapeutic pathways for PARP inhibitors and potential mechanisms of resistance. Exp Mol Med. 2021;53(1):42-51. doi: 10.1038/s12276-021-00557-3

28. Kim J.W., Min A., Im S.­A., Jang H., Kim Y.J., Kim H.­J., Lee K.-H., Kim T.-Y., Lee K.W., Oh D.-Y., Kim J.-H., Bang Y.-J. TDP1 and TOP1 modulation in olaparib­resistant cancer determines the ef­ficacy of subsequent chemotherapy. Cancers. 2020;12(2):334. doi: 10.3390/cancers12020334

29. Kornienko T.E., Chepanova A.A., Zakharenko A.L., Filimonov A.S., Luzina O.A., Dyrkheeva N.S., Nikolin V.P., Popova N.A., Salakhutdinov N.F., Lavrik O.I. Enhancement of the antitumor and antimeta­ static effect of topotecan and normalization of blood counts in mice with Lewis carcinoma by Tdp1 inhibitors – new usnic acid derivatives. Int J Mol Sci. 2024;25(2):1210. doi: 10.3390/ijms25021210

30. Lavrik O.I. PARPs’ impact on base excision DNA repair. DNA Repair. 2020;93:102911. doi: 10.1016/j.dnarep.2020.102911

31. Lebedeva N.A., Anarbaev R.O., Sukhanova M., Vasil’eva I.A., Rechkunova N.I., Lavrik O.I. Poly(ADP­ribose)polymerase 1 stimulates the AP­site cleavage activity of tyrosyl­DNA phosphodiesterase 1. Biosci Rep. 2015;35(4):e00230. doi: 10.1042/BSR20140192

32. Marchand C., Abdelmalak M., Kankanala J., Huang S.-Y., Kiselev E., Fesen K., Kurahashi K., Sasanuma H., Takeda S., Aihara H., Wang Z., Pommier Y. Deazaflavin inhibitors of tyrosyl-DNA phosphodiesterase 2 (TDP2) specific for the human enzyme and active against cellular TDP2. ACS Chem Biol. 2016;11(7):1925-1933. doi: 10.1021/acschembio.5b01047

33. Matsuno Y., Hyodo M., Fujimori H., Shimizu A., Yoshioka K. Sensitization of cancer cells to radiation and topoisomerase I inhibitor camptothecin using inhibitors of PARP and other signaling molecules. Cancers. 2018;10(10):364. doi: 10.3390/cancers10100364

34. Mirdita M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679-682. doi: 10.1038/s41592-022-01488-1

35. Moor N.A., Vasil’eva I.A., Anarbaev R.O., Antson A.A., Lavrik O.I. Quantitative characterization of protein-protein complexes involved in base excision DNA repair. Nucleic Acids Res. 2015;43(12):6009-6022. doi: 10.1093/nar/gkv569

36. Moretti R., Bender B.J., Allison B., Meiler J. Rosetta and the design of ligand binding sites. In: Stoddard B. (Ed.) Computational Design of Ligand Binding Proteins. Methods in Molecular Biology. Vol. 1414. New York: Humana Press, 2016;47-62. doi: 10.1007/978-1-4939-3569-7_4

37. Murai J., Marchand C., Shahane S.A., Sun H., Huang R., Zhang Y., Chergui A., Ji J., Doroshow J.H., Jadhav A., Takeda S., Xia M., Pommier Y. Identification of novel PARP inhibitors using a cell-based TDP1 inhibitory assay in a quantitative high-throughput screening platform. DNA Repair. 2014;21:177-182. doi: 10.1016/j.dnarep.2014.03.006

38. Neudachina L., Lakiza N. Physico-Chemical Principles of the Use of Coordination Compounds. Ekaterinburg, 2014 (in Russian)

39. Nguyen T.X., Abdelmalak M., Marchand C., Agama K., Pommier Y., Cushman M. Synthesis and biological evaluation of nitrated 7-, 8-, 9-, and 10-hydroxyindenoisoquinolines as potential dual topoisomerase I (Top1)–tyrosyl­DNA phosphodiesterase I (TDP1) inhi­bitors. J Med Chem. 2015;58(7):3188-3208. doi: 10.1021/acs.jmedchem.5b00136

40. O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: an open chemical toolbox. J Cheminform. 2011;3(1):33. doi: 10.1186/1758-2946-3-33

41. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-1612. doi: 10.1002/jcc.20084

42. Pommier Y., Leo E., Zhang H., Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17(5):421-433. doi: 10.1016/j.chembiol.2010.04.012

43. Pommier Y., Huang S.N., Gao R., Das B.B., Murai J., Marchand C. Tyrosyl­DNA­phosphodiesterases (TDP1 and TDP2). DNA Repair. 2014;19:114­129. doi: 10.1016/j.dnarep.2014.03.020

44. Quiroga R., Villarreal M.A. Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS One. 2016;11(5):e0155183. doi: 10.1371/journal.pone.0155183

45. Ray Chaudhuri A., Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18(10):610-621. doi: 10.1038/nrm.2017.53

46. Salentin S., Schreiber S., Haupt V.J., Adasme M.F., Schroeder M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015;43(W1):W443-W447. doi: 10.1093/nar/gkv315

47. Schreiber V., Dantzer F., Ame J.-C., de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 2006; 7(7):517-528. doi: 10.1038/nrm1963

48. Sherstyuk Y.V., Ivanisenko N.V., Zakharenko A.L., Sukhanova M.V., Peshkov R.Y., Eltsov I.V., Kutuzov M.M., Kurgina T.A., Belousova E.A., Ivanisenko V.A., Lavrik O.I., Silnikov V.N., Abramova T.V. Design, synthesis and molecular modeling study of conjugates of ADP and morpholino nucleosides as a novel class of inhibitors of PARP-1, PARP-2 and PARP-3. Int J Mol Sci. 2019;21(1):214. doi: 10.3390/ijms21010214

49. Smith L.M., Willmore E., Austin C.A., Curtin N.J. The novel poly(ADPribose) polymerase inhibitor, AG14361, sensitizes cells to topoisomerase I poisons by increasing the persistence of DNA strand breaks. Clin Cancer Res. 2005;11(23):8449-8457. doi: 10.1158/1078-0432.ccr-05-1224

50. Sukhanova M.V., Khodyreva S.N., Lavrik O.I. Poly(ADP­ribose) polymerase­1 inhibits strand­displacement synthesis of DNA catalyzed by DNA polymerase β. Biochemistry (Moscow). 2004;69(5):558-568. doi: 10.1023/b:biry.0000029855.68502.fa

51. Susova О.Y., Kаrshieva S.S., Kostyukov А.А., Мoiseevа N.I., Zaytseva Е.А., Kаlabina K.V., Zusinaite Е., Gildemann K., Smirnov N.М., Аrutyunyan А.F., Zhuze А.L. Dimeric bis­benzimidazole­pyrroles DB2Py(n) – AT-site-specific ligands: synthesis, physicochemical analysis, and biological activity. Acta Naturae. 2024;16(1):86-100. doi: 10.32607/actanaturae.27327

52. Szanto M., Yelamos J., Bai P. Specific and shared biological functions of PARP2 – is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med. 2024;26:e13. doi: 10.1017/erm.2024.14

53. Wang P., Elsayed M.S.A., Plescia C.B., Ravji A., Redon C.E., Kiselev E., Marchand C., Zeleznik O., Agama K., Pommier Y., Cush­man M. Synthesis and biological evaluation of the first triple inhibitors of human topoisomerase 1, tyrosyl­DNA phosphodiesterase 1 (Tdp1), and tyrosyl­DNA phosphodiesterase 2 (Tdp2). J Med Chem. 2017;60(8):3275-3288. doi: 10.1021/acs.jmedchem.6b01565

54. Wang R., Lai L., Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des. 2002;16(1):11-26. doi: 10.1023/a:1016357811882

55. Yang H., Zhu X.-Q., Wang W., Chen Y., Hu Z., Zhang Y., Hu D.­X., Yu L.-M., Agama K., Pommier Y., An L.-K. The synthesis of furoquinolinedione and isoxazoloquinolinedione derivatives as selective Tyrosyl­DNA phosphodiesterase 2 (TDP2) inhibitors. Bioorg Chem. 2021;111:104881. doi: 10.1016/j.bioorg.2021.104881

56. Yang H., Qin C., Wu M., Wang F., Wang W., Agama K., Pommier Y., Hu D., An L. Synthesis and biological activities of 11‐ and 12‐substituted benzophenanthridinone derivatives as DNA topoisomerase IB and tyrosyl‐DNA phosphodiesterase 1 inhibitors. ChemMedChem. 2023;18(10):e202200593. doi: 10.1002/cmdc.202200593

57. Zakharenko A., Khomenko T., Zhukova S., Koval O., Zakharova O., Anarbaev R., Lebedeva N., Korchagina D., Komarova N., Vasiliev V., Reynisson J., Volcho K., Salakhutdinov N., Lavrik O. Synthesis and biological evaluation of novel tyrosyl­DNA phosphodiesterase 1 inhibitors with a benzopentathiepine moiety. Bioorg Med Chem. 2015;23(9):2044-2052. doi: 10.1016/j.bmc.2015.03.020

58. Zakharenko A.L., Luzina O.A., Chepanova A.A., Dyrkheeva N.S., Salakhutdinov N.F., Lavrik O.I. Natural products and their derivatives as inhibitors of the DNA repair enzyme tyrosyl­DNA phosphodiesterase 1. Int J Mol Sci. 2023;24(6):5781. doi: 10.3390/ijms24065781

59. Zeng Z., Sharma A., Ju L., Murai J., Umans L., Vermeire L., Pom mier Y., Takeda S., Huylebroeck D., Caldecott K.W., El-Khamisy S.F. TDP2 promotes repair of topoisomerase I­mediated DNA damage in the absence of TDP1. Nucleic Acids Res. 2012;40(17):8371-8380. doi: 10.1093/nar/gks622

60. Zhang M., Wang Z., Su Y., Yan W., Ouyang Y., Fan Y., Huang Y., Yang H. TDP1 represents a promising therapeutic target for overcoming tumor resistance to chemotherapeutic agents: progress and potential. Bioorg Chem. 2025;154:108072. doi: 10.1016/j.bioorg.2024.108072

61. Zhang X.-R., Wang H.-W., Tang W.-L., Zhang Y., Yang H., Hu D.­X., Ravji A., Marchand C., Kiselev E., Ofori­Atta K., Agama K., Pommier Y., An L.-K. Discovery, synthesis, and evaluation of oxyniti­dine derivatives as dual inhibitors of DNA topoisomerase IB (TOP1) and tyrosyl­DNA phosphodiesterase 1 (TDP1), and potential antitumor agents. J Med Chem. 2018;61(22):9908-9930. doi: 10.1021/acs.jmedchem.8b00639

62. Zhang Y., He X., Yang H., Liu H., An L. Robustadial A and B from Eucalyptus globulus Labill. and their anticancer activity as selective tyrosyl‐DNA phosphodiesterase 2 inhibitors. Phytotherapy Res. 2021;35(9):5282-5289. doi: 10.1002/ptr.7207


Review

Views: 291

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)