Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Plant cell wall and the mechanisms of resistance to pathogens

https://doi.org/10.18699/VJ15.109

Abstract

A huge variety of phytopathogens (viruses, bacteria, fungi) are potentially able to infect plant tissues and cause diseases. Numerous plant genes control a complex network of defense mechanisms based on both constitutive and inducible processes. The cell wall is a primary barrier the pathogens have to penetrate to start the infection process. However,it is able to block invasion by most non-specific potential pathogens. The cell wall structure may differ in various plant species. It is based on the net of cellulose microfibrils linked by hemicellulose molecules. Pectin and lignin are the other important cell wall constituents. Dozens of proteins inside the cell wall are involved in structural and metabolic processes as well as in signal transduction and regulatory circuits (more information is available in W allProtDB database). Each of these components contributes to resistance to pathogens. At the points of contact with potential pathogens cell wall structural changes and accumulation of metabolites with antimicrobial, antifungal or antiviral activities occur. Some pathogens could produce hydrolytic enzymes able to degrade cellulose and pectin to counteract these non-specific plant resistance mechanisms. In turn, plants developed the inhibitors of pathogen-related enzymes and this “arms race” is an important part of plant evolution and host-pathogen interaction mechanisms. Plants also can evaluate the cell wall state to compensate for imbalances and deficiencies. For instance, mutants with cellulose deficiency may have a higher lignification rate and a stronger stress response. The cell wall is also a source of signal molecules triggering the initiation of response mechanisms. In total, the plan cell wall is a complex dynamic structure able to prevent infection by most potential (non-specific) pathogens and switch on the mechanisms of plant immune response. The reconstruction of gene networks controlling the cell wall structural and functional organization during the growth, and under normal and stressful conditions is vitally important for understanding the basic molecular mechanisms of development and stress resistance. The mechanisms of specific and non- specific plant resistance to various phytopathogens connected to the cell wall structure are reviewed. The roles of the cell wall constituents in pathogen detection and the induction of defense mechanism are discussed

About the Authors

O. G. Smirnova
Institute of Cytology and Genetics SB RA S, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
Russian Federation


A. V. Kochetov
Institute of Cytology and Genetics SB RA S, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
Russian Federation


References

1. Ayliffe M., Devilla R., Mago R., White R., Talbot M., Pryor A., Leung H. Nonhost resistance of rice to rust pathogens. Mol. Plant- Microbe Interact. 2011a;24:1143- 1155.

2. Ayliffe M., Jin ., Kang Z.S., Persson M., Steffenson B., Wang S.P., Leung H. Determining the basis of nonhost resistance in rice to cereal rusts. Euphytica. 2011b;179:33-40. DOI 10.1007/s10681-010-0280-2

3. Azinheira H.G., Silva M.D., Talhinhas P., Medeira C., Maia I., Petitot A.S., Fernandez D. Non-host resistance responses of Arabidopsis thaliana to the coffee leaf rust fungus (Hemileia vastatrix). Botany. 2010;88:621-629.

4. Bayles C.J., Ghemawat M.S., Aist J.R. Inhibition by 2-deoxy-D-glucose of callose formation, papilla deposition, and resistance to powdery mildew in an mlo barley mutant. Physiol. Mol. Plant Pathol. 1990;36:63-72. DOI 10.1016/0885-5765(90)90092-C

5. Bednarek P., Piślewska-Bednarek M., Svatoš A., Schneider B., Doubský J., Mansurova M., Humphry M., Consonni C., Panstruga R., Sanchez-Vallet A., Molina A., Schulze- Lefert P. A glucosinolate metabolism pathway in living plant cells mediates broadspectrum antifungal defense. Science. 2009;232:101-106. DOI 10.1126/science.1163732

6. Belien T., Van Campenhout S., Robben J., Volckaert G. Microbial endoxylanases: effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems? Mol. Plant-Microbe Interact. 2006;19:1072-1081.

7. Bellincampi D., Camardella L., Delcour J.A., Desseaux V., D’Ovidio R., Durand A., Elliot G., Gebruers K., Giovane A., Juge N., Sørensen J. F., Svensson B., Vairo D. Potential physiological role of plant glycosidase inhibitors. Biochim. Biophys. Acta. 2004;1696(2):265-274. DOI 10.1016/j.bbapap.2003.10.011

8. Bhuiyan N., Liu W., Liu G., Selvaraj G., Wei Y., King J. Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat. Plant Mol. Biol. 2007;64:305-318.

9. Bhuiyan N.H., Selvaraj G., Wei Y., King J. Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. J. Exp. Bot. 2009;60:509-521. DOI 10.1093/jxb/ern290

10. Bishop D.L., Chyatterton N.J., Harrison P.A., Hatfield R.D. Changes in carbohydrate partitioning and cell wall remodeling with stressinduced pathogenesis in wheat sheaths. Physiol. Mol. Plant Pathol. 2002;61:53-63. DOI 10.1006/pmpp.2002.0416

11. Boller T., Felix G. A renaissance of elicitors: perception of microbeassociated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 2009;60:379-406. DOI 10.1146/annurev.arplant.57.032905.105346

12. Bolton M.D., Van Esse H.P., Vossen J.H., De Jonge R., Stergiopoulos I., Stulemeijer I.J., van den Berg G.C., Borrás-Hidalgo O., Dekker H. L., de Koster C.G., de Wit P.J., Joosten M.H., Thomma B.P. The novel Cladosporium fulvum lysin motif effector Ecp6 is avirulence factor with orthologues in other fungal species. Mol. Microbiol. 2008; 69(1):119-136. DOI 10.1111/j.1365-2958.2008.06270.x

13. Bout S., Vermerris W. A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol. Genet. Genomics. 2003;269:205-214. DOI 10.1007/s00438-003-0824-4

14. Bueter C.L., Specht C.A., Levitz S.M. Innate sensing of chitin and chitosan. PLoS Pathog. 2013;9:e1003080. DOI 10.1371/journal.ppat.1003080

15. Cano-Delgado A., Penfield S., Smith C., Catley M., Bevan M. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 2003;34:351-362. DOI 10.1046/j.1365-313X.2003.01729.x

16. Casassola A., Brammer S.P., Chaves M.S., Martinelli J.A., Stefanato F., Boyd L.A. Changes in gene expression profiles as they relate to the adult plant leaf rust resistance in the wheat cv. Toropi. Physiol Mol. Plant Pathol. 2015;89:49-54. DOI 10.1016/j.pmpp.2014.12.004

17. Cheng Y., Zhang H., Yao J., Wang X., Xu J., Han Q., Wei G., Huang L., Kang Z. Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen. BMC Plant Biol. 2012;12:96. DOI 10.1186/1471-2229-12-96

18. Clay N.K., Adio A.M., Denoux C., Jander G., Ausubel F.M. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science. 2009;323:95-100. DOI 10.1126/science.1164627

19. Collins N.C., Thordal-Christensen H., Lipka V., Bau S., Kombrink E., Qiu J.L., Huckelhoven R., Stein M., Freialdenhoven A., Somerville S.C., Schulze-Lefert P. SNARE-protein-mediated disease resistance at the plant cell wall. Nature. 2003;425:973-977. DOI 10.1038/nature02076

20. Cunnac S., Lindeberg M., Collmer A. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr. Opin. Microbiol. 2009;12(1):53-60. DOI 10.1016/j.mib.2008.12.003

21. Dangl J.L., Horvath D.M., Staskawicz B.J. Pivoting the plant immune system from dissection to deployment. Science. 2013;341(6147):746- 751. DOI 10.1126/science.1236011

22. de Jonge R., Van Esse H.P., Kombrink A., Shinya T., Desaki Y., Bours R., van der Krol S., Shibuya N., Joosten M.H., Thomma B.P. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science. 2010;329:953-955. DOI 10.1126/science.1190859

23. Del Río J.C., Rencoret J., Prinsen P., Martínez Á.T., Ralph J., Gutiérrez A. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric. Food Chem. 2012;60(23):5922-5935. DOI 10.1021/jf301002n

24. Denness L., Mckenna J.F., Segonzac C., Wormit A., Madhou P., Bennett M., Mansfield J., Zipfel C., Hamann T. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen speciesand jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 2011;156(3):1364-1374. DOI 10.1104/pp.111.175737.

25. Ellis C., Turner J.G. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell. 2001;13(5):1025-1033.

26. Endler A., Persson S. Cellulose synthases and synthesis in Arabidopsis. Mol. Plant. 2011;4(2):199-211. DOI 10.1093/mp/ssq079

27. Fatima U., Senthil-Kumar M. Plant and pathogen nutrient acquisition strategies. Front Plant Sci. 2015;17;6:750. DOI 10.3389/fpls.2015.00750

28. Ferrari S., Savatin D.V., Sicilia F., Gramegna G., Cervone F., Lorenzo G.D. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 2013;4:49. DOI 10.3389/fpls.2013.00049

29. Filipenko E.A., Kochetov A.V., Kanayama Y., Malinovsky V.I., Shumny V.K. Association between PR proteins with ribonuclease activity and plant resistance against pathogenic fungi. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(2):326-334.

30. Funnell-Harris D.L., Pedersen J.F., Sattler S.E. Alteration in lignin biosynthesis restricts growth of Fusarium spp. in brown midrib sorghum. Phytopathology. 2010;100(7):671-681. DOI 10.1094/PHYTO-100-7-0671

31. Furman-Matarasso N., Cohen E., Du Q., Chejanovsky N., Hanania U., Avni A. A point mutation in the ethylene-inducing xylanase elicitor inhibits the beta-1-4- endoxylanase activity but not the elicitation activity. Plant Physiol. 1999;121(2):345-351.

32. Furukawa T., Inagaki H., Takai R., Hirai H., Che F.S. Two distinct EFTu epitopes induce immune responses in rice and Arabidopsis. Mol. Plant Microbe Interact. 2013;27(2):113-124. DOI 10.1094/MPMI-10-13-0304-R

33. Galletti R., De Lorenzo G., Ferrari S. Host-derived signals activate plant innate immunity. Plant Signal. Behav. 2009;4:33-34.

34. Hadwiger L.A. Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci. 2013;208:42-49. DOI 10.1016/j.plantsci.2013.03.007

35. Hamann T. Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms. Front. Plant Sci. 2012;3:77. DOI 10.3389/fpls.2012.00077

36. Hernandez-Blanco C., Feng D.X., Hu J., Sanchez-Vallet A., Deslandes L., Llorente F., Berrocal-Lobo M., Keller H., Barlet X., Sánchez-Rodríguez C., Anderson L.K., Somerville S., Marco Y., Molina A. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell. 2007;19(3):890-903. DOI 10.1105/tpc.106.048058

37. Hoogkamp T., Chen W.Q., Niks R. Specificity of prehaustorial resistance to Puccinia hordei and to two inappropriate rust fungi in barley. Phytopathology. 1998;88(8):856-861. DOI 10.1094/PHYTO.1998.88.8.856

38. Ikegawa T., Mayama S., Nakayashiki H., Kato H. Accumulation of diferulic acid during the hypersensitive response of oat leaves to Puccinia coronate f. sp. avenae and its role in the resistance of oat tissues to cell wall degrading enzymes. Physiol. Mol. Plant Pathol. 1996;48(4):245-256. DOI 10.1006/pmpp.1996.0021

39. Jafary H., Albertazzi G., Marcel T.C., Niks R.E. High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics. 2008;178(4):2327-2339. DOI 10.1534/genetics.107.077552

40. Jones J.D.G., Dangl J.L. The plant immune system. Nature. 2006; 444(7117):323-329. DOI 10.1038/nature05286

41. Juge N. Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci. 2006;11(7):359-367. DOI 10.1016/j.tplants.2006.05.006

42. Kofalvi S.A., Nassuth A. Influence of wheat streak mosaic virus infection on phenylpropanoid metabolism and the accumulation of phenolics and lignin in wheat. Physiol. Mol. Plant Pathol. 1995;47(6):365-377. DOI 10.1006/pmpp.1995.1065

43. König S., Feussner K., Kaever A., Landesfeind M., Thurow C., Karlovsky P., Gatz C., Polle A., Feussner I. Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytol. 2014;202(3):823-837. DOI 10.1111/nph.12709

44. Kumar M., Turner S. Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry. 2015;112:91-99. DOI 10.1016/j.phytochem.2014.07.009

45. Lacombe S., Rougon-Cardoso A., Sherwood E., Peeters N., Dahlbeck D., Van Esse H.P., Smoker M., Rallapalli G., Thomma B.P., Staskawicz B., Jones J.D., Zipfel C. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 2010;28(4):365-369. DOI 10.1038/nbt.1613

46. Lee W.S., Rudd J.J., Hammond-Kosack K.E., Kanyuka K. Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol. Plant Microbe Interact. 2014;27(3):236-243. DOI 10.1094/MPMI-07-13-0201-R

47. Li H., Goodwin P.H., Han Q., Huang L., Kang Z. Microscopy and proteomic analysis of the non-host resistance of Oryza sativa to the wheat leaf rust fungus, Puccinia triticina f. sp. tritici. Plant Cell Rep. 2012;31(4):637-650. DOI 10.1007/s00299-011-1181-0

48. Lionetti V. PECTOPLATE: the simultaneous phenotyping of pectin methylesterases, pectinases, and oligogalacturonides in plants during biotic stresses. Front Plant Sci. 2015;6:331. DOI 10.3389/fpls.2015.00331

49. Liu T., Liu Z., Song C., Hu Y., Han Z., She J., Fan F., Wang J., Jin C., Chang J., Zhou J.M., Chai J. Chitin-induced dimerization activates a plant immune receptor. Science. 2012;336(6085):1160-1164. DOI 10.1126/science

50. Maher E.A., Bate N.J., Ni W., Elkind Y., Dixon R.A., Lamb C.J. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc. Natl Acad. Sci. USA. 1994;91(16):7802-7806.

51. Malinovsky F.G., Fangel J.U., Willats W.G. The role of the cell wall in plant immunity. Front Plant Sci. 2014;5:178. DOI 10.3389/fpls.2014.00178

52. Manabe Y., Nafisi M., Verhertbruggen Y., Orfila C., Gille S., Rautengarten C., Cherk C., Marcus S.E., Somerville S., Pauly M., Knox J. P., Sakuragi Y., Scheller H.V. Loss-of-function mutation of reduced wall acetylation 2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea. Plant Physiol. 2011;155(3):1068-1078. DOI 10.1104/pp.110.168989

53. Maury S., Delaunay A., Mesnard F., Cronier D., Chabbert B., Geoffroy P., Legrand M. O-methyltransferase(s)-suppressed plants produce lower amounts of phenolic vir inducers and are less susceptible to Agrobacterium tumefaciens infection. Planta. 2010;232(4):975-986. DOI 10.1007/s00425-010-1230-x

54. Mellersh D.G., Heath M.C. An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Mol. Plant Microbe Interact. 2003;16(5):398-404.

55. Menden B., Kohlhoff M., Moerschbacher B.M. Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochemistry. 2007;68(4):513-520. DOI 10.1016/j.phytochem.2006.11.011

56. Miedes E., Vanholme R Boerjan W Molina A. The role of the secondary cell wall in plant resistance to pathogens. Front Plant Sci. 2014;5:358. DOI 10.3389/fpls.2014.00358

57. Mikhaylova R.V. Matseriruyushchie fermenty mitselialnykh gribov v biotekhnologii [Macerating enzymes of mycelial fungi in biotechnology]. Minsk, Belorusskaya nauka, 2007.

58. Moscetti I., Tundo S., Janni M., Sella L., Gazzetti K., Tauzin A., Giardina T., Masci S., Favaron F., D’Ovidio R. Constitutive expression of the xylanase inhibitor TAXI-III delays fusarium head blight symptoms in durum wheat transgenic plants. Mol. Plant Microbe Interact. 2013;26(12):1464-1472. DOI 10.1094/MPMI-04-13-0121-R

59. Mysore K.S., Ryu C.M. Nonhost resistance: how much do we know? Trends Plant Sci. 2004;9(2):97-104. DOI 10.1016/j.tplants.2003.12.005

60. Nicaise V., Roux M., Zipfel C. Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol. 2009;150(4):1638-1647. DOI 10.1104/pp.109.139709

61. Niks R. Comparative histology of partial resistance and the nonhost reaction to leaf rust pathogens in barley and wheat seedlings. Phytopathology. 1983;73:60-64.

62. Noda J., Brito N., González C. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol. 2010;10:38. DOI 10.1186/1471-2229-10-38

63. Nurnberger T., Lipka V. Non-host resistance in plants: new insights into an old phenomenon. Mol. Plant. Pathol. 2005;6(3):335-345. DOI 10.1111/j.1364-3703.2005.00279.x

64. Parrott D.L., Anderson A.J., Carman J.G. Agrobacterium induces plant cell death in wheat (Triticum aestivum L.). Physiol. Mol. Plant Pathol. 2002;60(2):59-69. DOI 10.1006/pmpp.2002.0378

65. Pauly M., Gille S., Liu L.F., Mansoori N., De Souza A., Schultink A., Xiong G. Hemicellulose biosynthesis. Planta. 2013;238(4):627-642. DOI 10.1007/s00425-013-1921-1

66. Pogorelko G., Lionetti V., Bellincampi D., Zabotina O. Cell wall integrity: targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. Plant Signal Behav. 2013;8: e25435. DOI 10.4161/psb.25435

67. Prabhu S.A., Wagenknecht M., Melvin P., Gnanesh Kumar B.S., Veena M., Shailasree S., Moerschbacher B.M., Kini K.R. Immuno-affinity purification of PglPGIP1, a polygalacturonase-inhibitor protein from pearl millet: studies on its inhibition of fungal polygalacturonases and role in resistance against the downy mildew pathogen. Mol. Biol. Rep. 2015;42(6):1123-1138. DOI 10.1007/s11033-015-3850-5

68. Prats E., Martinez F., Rojas-Molina M., Rubiales D. Differential effects of phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase, and energetic metabolism inhibition on resistance of appropriate host and nonhost cereal-rust interactions. Phytopathology. 2007;97(12):1578-1583. DOI 10.1094/PHYTO-97-12-1578

69. Romero D., Rivera M.E., Cazorla F.M., Codina J.C., Fernández-Ortuño D., Torés J.A., Pérez-García A., de Vicente A. Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon-powdery mildew (Podosphaera fusca) interactions. J. Plant Physiol. 2008;165(18):1895-1905. DOI 10.1016/j.jplph.2008.04.020

70. Ron M., Avni A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell. 2004;16(6):1604-1615. DOI 10.1105/tpc.022475

71. Rudd J.J., Kanyuka K., Hassani-Pak K., Derbyshire M., Andongabo A., Devonshire J., Lysenko A., Saqi M., Desai N.M., Powers S.J., Hooper J., Ambroso L., Bharti A., Farmer A., Hammond-Kosack K.E., Dietrich R.A., Courbot M. Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiol. 2015;167(3):1158-1185. DOI 10.1104/pp.114.255927

72. San Clemente H., Jamet E. WallProtDB, a database resource for plant cell wall proteomics. Plant Methods. 2015;11(1):2. DOI 10.1186/s13007-015-0045-y

73. Sanchez-Vallet A., Saleem-Batcha R., Kombrink A., Hansen G., Valkenburg D.J., Thomma B.P., Mesters J.R. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. Elife. 2013;2:e00790. DOI 10.7554/eLife.00790

74. Sattler S.E., Funnell-Harris D.L. Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens? Front. Plant Sci. 2013;4:70. DOI 10.3389/fpls.2013.00070

75. Sattler S.E., Saathoff A.J., Haas E.J., Palmer N.A., Funnell-Harris D.L., Sarath G., Pedersen J.F. A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib 6 phenotype. Plant Physiol. 2009;150(2):584-595. DOI 10.1104/pp.109.136408

76. Scheller H.V., Ulvskov P. Hemicelluloses. Annu. Rev. Plant Biol. 2010;61:263-289. DOI 10.1146/annurev-arplant-042809-112315

77. Schoonbeek H.J., Wang H.H., Stefanato F.L., Craze M., Bowden S., Wallington E., Zipfel C., Ridout C.J. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol. 2015;206(2):606-613. DOI 10.1111/nph.13356

78. Sella L., Gazzetti K., Faoro F., Odorizzi S., D’Ovidio R., Schafer W., Favaron F. A Fusarium graminearum xylanase expressed during wheat infection is a necrotizing factor but is not essential for virulence. Plant Physiol. Biochem. 2013;64:1-10. DOI 10.1016/j.plaphy.2012.12.008

79. Senthil-Kumar M., Mysore K.S. Non host resistance against bacterial pathogens: retrospectives and prospects. Annu. Rev. Phytopathol. 2013;51:407-427. DOI 10.1146/annurev-phyto-082712-102319

80. Shadle G.L., Wesley S.W., Korth K.L., Chen F., Lamb C., Dixon R.A. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of l- phenylalanine ammonia-lyase. Phytochemistry 2003;64(1):153-161. DOI 10.1016/S0031-9422(03)00151-1

81. Shafiei R., Hang C., Kang J.G., Loake G.J. Identification of loci controlling non- host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Mol. Plant Pathol. 2007;8(6):773-784. DOI 10.1111/j.1364-3703.2007.00431.x

82. Shi H., Liu Z., Zhu L., Zhang C., Chen Y., Zhou Y., Li F., Li X. Overexpression of cotton (Gossypium hirsutum) dirigent 1 gene enhances lignification that blocks the spread of Verticillium dahlia. Acta Biochim. Biophys. Sin. 2012;44(7):555-564. DOI 10.1093/abbs/gms035

83. Shimizu T., Nakano T., Takamizawa D., Desaki Y., Ishii-Minami N., Nishizawa Y., Minami E., Okada K., Yamane H., Kaku H., Shibuya N. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 2010;64(2):204-214. DOI 10.1111/j.1365-313X.2010.04324.x

84. Shinya T., Motoyama N., Ikeda A., Wada M., Kamiya K., Hayafune M., Kaku H., Shibuya N. Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol. 2012;53(10):1696-1706. DOI 10.1093/pcp/pcs113

85. Smirnova O.G., Ibragimova S.S., Kochetov A.V. Simple database to select promoters for plant transgenesis. Transgenic Res. 2012;21(2): 429-437. DOI 10.1007/s11248-011- 9538-2

86. Smirnova O.G., Kochetov A.V. Plant gene promoters responsive to pathogen invasion. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;18(4/1):765-775.

87. Smirnova O.G., Kochetov A.V. Promoters of plant genes responsive to pathogen invasion. Russ. J. Genet.: Applied Res. 2015;5(3):254- 261. DOI: 10.1134/S2079059715030181

88. Smith A.H., Gill W.M., Pinkard E.A., Mohammed C.L. Anatomical and histochemical defence responses induced in juvenile leaves of Eucalyptus globulus and Eucalyptus nitens by Mycosphaerella infection. For. Pathol. 2007;37:361-373. DOI 10.1111/j.1439-0329.2007.00502.x

89. Szabo L.J., Bushnell W.R. Hidden robbers: the role of fungal haustoria in parasitism of plants. Proc. Natl Acad. Sci. USA. 2001;98(14):7654-7765. DOI 10.1073/pnas.151262398

90. Takken F.L., Thomas C.M., Joosten M.H., Golstein C., Westerink N., Hille J., Nijkamp H.J., De Wit P.J., Jones J.D. A second gene at the tomato Cf-4 locus confers resistance to Cladosporium fulvum through recognition of a novel avirulence determinant. Plant J.1999;20(3):279-288. DOI 10.1046/j.1365-313X.1999.00601.x

91. Trdá L., Boutrot F., Claverie J., Brulé D., Dorey S., Poinssot B. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci. 2015;6:219. DOI 10.3389/fpls.2015.00219

92. Underwood W. The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci. 2012;3:85. DOI 10.3389/fpls.2012.00085

93. van den Burg H.A., Harrison S.J., Joosten M.H., Vervoort J., De Wit P.J. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol. Plant Microbe Interact. 2006;19(12):1420-1430.

94. van Esse H.P., Bolton M.D., Stergiopoulos I., de Wit P.J., Thomma B.P. The chitin- binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Mol. Plant Microbe Interact. 2007;20(8):1092-1101.

95. Voigt C.A. Callose-mediated resistance to pathogenic intruders in plant defense- related papillae. Front Plant Sci. 2014;5:168. DOI 10.3389/fpls.2014.00168

96. Wang K., Senthil-Kumar M., Ryu C.M., Kang L., Mysore K.S. Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol. 2012;158(4):1789-1802. DOI 10.1104/pp.111.189217

97. Way H.M., Kazan K., Mitter N., Goulter K.C., Birch R.G., Manners J. M. Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiol. Mol. Plant Pathol. 2002;60(6):275-282. DOI 10.1006/pmpp.2002.0407

98. Wiesel L., Newton A.C., Elliott I., Booty D., Gilroy E.M., Birch P.R., Hein I. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Front Plant Sci. 2014;5:655. DOI 10.3389/fpls.2014.00655

99. Wróbel-Kwiatkowska M., Starzycki M., Zebrowski J., Oszmiañski J., Szopa J. Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties. J. Biotechnol. 2007;128(4):919- 934. DOI 10.1016/j.jbiotec.2006.12.030

100. Xu L., Zhu L., Tu L., Liu L., Yuan D., Jin L., Long L., Zhang X. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J. Exp. Bot. 2011;62: 5607-5621.

101. Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014; 35(7):345-351. DOI 10.1016/j.it.2014.05.004

102. Zhang H., Wang C., Cheng Y., Wang X., Li F., Han Q., Xu J., Chen X., Huang L., Wei G., Kang Z. Histological and molecular studies of the non-host interaction between wheat and Uromyces fabae. Planta. 2011;234(5):979-991. DOI 10.1007/s00425-011-1453-5

103. Zhao J., Buchwaldt L., Rimmer S.R., Sharpe A., Mcgregor L., Bekkoui D., Heqedus D. Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum. Mol. Plant Pathol. 2009;10(5):635-649. DOI 10.1111/j.1364- 3703.2009.00558.x


Review

Views: 8677


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)