Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Effect of RNAi-mediated silencing of the TaAOS2 gene on phytohormone accumulation, growth and productivity in bread wheat

https://doi.org/10.18699/vjgb-25-124

Abstract

Reverse genetics methods are actively used in plant biology to study the functions of specific genes responsible for the adaptation of plants to various environmental stresses. The present study describes the production and primary characterization of transgenic bread wheat with silenced expression of allen oxide synthase (AOS). AOS is a key enzyme involved in the initial step of biosynthesis of stress-related phytohormones known as jasmonates. To induce silencing of AOS in wheat, we designed the RNA interference (RNAi) vector containing an inverted repeat region of the TaAOS2 gene cloned from genome DNA of cv. Chinese Spring. With the help of biolistic-mediated transformation, a number of transgenic Chinese Spring plants have been produced. Real-Time PCR analysis confirmed the suppression of target gene expression, since transgenic dsRNAi lines accumulated only 21–44 % mRNA of TaAOS2 after leaf wounding compared to the wound-induced level in non-transgenic control. Gas chromatography–mass spectrometry revealed that the silencing of TaAOS2 substantially reduced the accumulation of jasmonic acid (JA) and jasmonoyl-isoleucine conjugate (JA-Ile), while the production of other phytohormones, such as abscisic acid and salicylic acid, was not affected. TaAOS2-silenced lines were characterized by shorter leaves at the juvenile stage, demonstrated a tendency towards reduced plant height and decreased grain weight, while the average flowering time and plant fertility (number of seeds per spike) were not affected. The obtained transgenic lines in combination with AOS-overexpressing lines can be used for further detailed analysis of the adaptive responses controlled by the jasmonate hormonal system.

About the Authors

D. N. Miroshnichenko
Institute of Basic Biological Problems of the Russian Academy of Sciences; Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Pushchino, Moscow region



A. V. Pigolev
Institute of Basic Biological Problems of the Russian Academy of Sciences
Russian Federation

Pushchino, Moscow region



E. A. Degtyaryov
Institute of Basic Biological Problems of the Russian Academy of Sciences
Russian Federation

Pushchino, Moscow region



V. I. Degtyaryova
Institute of Basic Biological Problems of the Russian Academy of Sciences; Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Pushchino Branch of Russian Biotechnological University
Russian Federation

Pushchino, Moscow region



V. V. Alekseeva
Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Pushchino, Moscow region



A. S. Pushin
Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Pushchino, Moscow region



S. V. Dolgov
Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Pushchino, Moscow region



T. V. Savchenko
Institute of Basic Biological Problems of the Russian Academy of Sciences
Russian Federation

Pushchino, Moscow region



References

1. An L., Wang Z., Cui Y., Yao Y., Bai Y., Liu Y., Li X., Yao X., Wu K. Bioinformatics, expression analysis, and functional verification of allene oxide synthase gene HvnAOS1 and HvnAOS2 in qingke. Open Life Sci. 2024;19(1):20220855. doi 10.1515/biol-2022-0855

2. Chehab E.W., Kim S., Savchenko T., Kliebenstein D., Dehesh K., Braam J. Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic acid-producing mutant. Plant Physiol. 2011; 156(2):770-778. doi 10.1104/pp.111.174169

3. Degtyaryov E., Pigolev A., Miroshnichenko D., Frolov A., Bas net A.T., Gorbach D., Leonova T., Pushin A.S., Alekseeva V., Dol gov S., Savchenko T. 12-Oxophytodienoate reductase overexpres sion compromises tolerance to Botrytis cinerea in hexaploid and tetraploid wheat. Plants (Basel). 2023;12(10):2050. doi 10.3390/plants12102050

4. Fan Y.-H., Hou B.-Q., Su P.-S., Wu H.-Y., Wang G.-P., Kong L.-R., Ma X., Wang H.-W. Application of virus-induced gene silencing for identification of FHB resistant genes. J Integr Agric. 2019;18(10): 2183-2192. doi 10.1016/S2095-3119(18)62118-5

5. Harvey A., Moisan L., Lindup S., Lonsdale D. Wheat regenerated from scutellum callus as a source of material for transformation. Plant Cell Tissue Organ Cult. 1999;57:153-156. doi 10.1023/A:1006344615666

6. Heckmann A., Perochon A., Doohan F.M. Genome-wide analysis of salicylic acid and jasmonic acid signalling marker gene families in wheat. Plant Biol. 2024;26(5):691-704. doi 10.1111/plb.13659

7. Jiang K., Pi Y., Huang Z., Hou R., Zhang Z., Lin J., Sun X., Tang K. Molecular cloning and mRNA expression profiling of the first speci f ic jasmonate biosynthetic pathway gene allene oxide synthase from Hyoscyamus niger. Russ J Genet. 2009;45:430-439. doi 10.1134/S1022795409040073

8. Kamińska M. Role and activity of jasmonates in plants under in vitro conditions. Plant Cell Tissue Organ Cult. 2021;146:425-447. doi 10.1007/s11240-021-02091-6

9. Kim S.-J., Park Y.-D., Lee J.-W. Validation of the role of Allium cepa allene oxide synthase (AcAOS) in resistance to Botrytis squamosa. Hortic Environ Biotechnol. 2025;66:951-965. doi 10.1007/s13580025-00706-x

10. Kimberlin A.N., Holtsclaw R.E., Zhang T., Mulaudzi T., Koo A.J. On the initiation of jasmonate biosynthesis in wounded leaves. Plant Physiol. 2022;189(4):1925-1942. doi 10.1093/plphys/kiac163

11. Laudert D., Pfannschmidt U., Lottspeich F., Holländer-Czytko H., Weiler E.W. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first en zyme of the octadecanoid pathway to jasmonates. Plant Mol Biol. 1996;31:323-335. doi 10.1007/BF00021793

12. Laudert D., Weiler E.W. Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J. 1998;15(5): 675-684. doi 10.1046/j.1365-313x.1998.00245.x

13. Liu H.-H., Wang Y.-G., Wang S.-P., Li H.-J., Xin Q.-G. Improved zinc tolerance of tobacco by transgenic expression of an allene oxide synthase gene from hexaploid wheat. Acta Physiol Plant. 2014;36(9): 2433-2440. doi 10.1007/s11738-014-1616-7

14. Miroshnichenko D., Timerbaev V., Klementyeva A., Pushin A., Sidoro va T., Litvinov D., Nazarova L., Shulga O., Divashuk M., Karlov G., Salina E., Dolgov S. CRISPR/Cas9-induced modification of the conservative promoter region of VRN-A1 alters the heading time of hexaploid bread wheat. Front Plant Sci. 2022;13:1048695. doi 10.3389/fpls.2022.1048695

15. Miroshnichenko D.N., Pigolev A.V., Pushin A.S., Alekseeva V.V., Degtyaryova V.I., Degtyaryov E.A., Pronina I.V., Frolov A., Dol gov S.V., Savchenko T.V. Genetic transformation of Triticum dicoc cum and Triticum aestivum with genes of jasmonate biosynthesis pathway affects growth and productivity characteristics. Plants ( Basel). 2024a;13(19):192781. doi 10.3390/plants13192781

16. Miroshnichenko D.N., Pigolev A.V., Tikhonov K.G., Degtyaryov E.A., Leshchenko E.F., Alekseeva V.V., Pushin A.S., Dolgov S.V., Bas net A., Gorbach D.P., Leonova T.S., Frolov A.A., Savchenko T.V. Characteristics of the stress-tolerant transgenic wheat line over expressing the AtOPR3 gene encoding the jasmonate biosynthe sis enzyme 12-oxophytodienoate reductase. Russ J Plant Physiol. 2024b;71(54):1446. doi 10.1134/S1021443724604658

17. Naor N., Gurung F.B., Ozalvo R., Bucki P., Sanadhya P., Miyara S.B. Tight regulation of allene oxide synthase (AOS) and allene oxide cyclase-3 (AOC3) promote Arabidopsis susceptibility to the root knot nematode Meloidogyne javanica. Eur J Plant Pathol. 2018; 150:149-165. doi 10.1007/s10658-017-1261-2

18. Pajerowska-Mukhtar K.M., Mukhtar M.S., Guex N., Halim V.A., Rosahl S., Somssich I.E., Gebhardt C. Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis. Planta. 2008;228(2):293- 306. doi 10.1007/s00425-008-0737-x

19. Park J.-H., Halitschke R., Kim H.B., Baldwin I.T., Feldmann K.A., Feyereisen R. A knock-out mutation in allene oxide synthase re sults in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J. 2002;31(1):1-12. doi 10.1046/j.1365-313X.2002.01328.x

20. Pigolev A.V., Miroshnichenko D.N., Pushin A.S., Terentyev V.V., Boutanayev A.M., Dolgov S.V., Savchenko T.V. Overexpression of Arabidopsis OPR3 in hexaploid wheat (Triticum aestivum L.) alters plant development and freezing tolerance. Int J Mol Sci. 2018;19: 123989. doi 10.3390/ijms19123989

21. Pigolev A.V., Miroshnichenko D.N., Dolgov S.V., Alekseeva V.V., Pushin A.S., Degtyaryova V.I., Klementyeva A., Gorbach D., Leo nova T., Basnet A., Frolov A.A., Savchenko T.V. Endogenously produced jasmonates affect leaf growth and improve osmotic stress tolerance in emmer wheat. Biomolecules. 2023;13(12):121775. doi 10.3390/biom13121775

22. Placido D.F., Dong N., Dong C., Cruz V.M.V., Dierig D.A., Ca hoon R.E., Kang B.-G., Huynh T., Whalen M., Ponciano G., McMahan C. Downregulation of a CYP74 rubber particle protein increases natural rubber production in Parthenium argentatum. Front Plant Sci. 2019;10:760. doi 10.3389/fpls.2019.00760

23. Sun T., Chen Y., Feng A., Zou W., Wang D., Lin P., Chen Y., You C., Que Y., Su Y. The allene oxide synthase gene family in sugarcane and its involvement in disease resistance. Ind Crops Prod. 2023; 192:116136. doi 10.1016/j.indcrop.2022.116136

24. Takumi S., Shimada T. Variation in transformation frequencies among six common wheat cultivars through particle bombardment of scu tellar tissues. Genes Genet Syst. 1997;72(2):63-69. doi 10.1266/ggs.72.63

25. Zeng J., Zhang T., Huangfu J., Li R., Lou Y. Both allene oxide syn thases genes are involved in the biosynthesis of herbivore-induced jasmonic acid and herbivore resistance in rice. Plants (Basel). 2021; 10(3):30442. doi 10.3390/plants10030442


Review

Views: 43

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)