Computer simulation of the spatial structure of MUC 1 peptides capable of inhibiting apoptosis
https://doi.org/10.18699/VJ15.101
Abstract
Identification of new effective inhibitors of apoptosis is an important task for drug development for treatment of a number diseases including neurogenerative diseases. Initiation of apoptosis occurs via the formationof macromolecular protein complexes. In these complexes, activation of key enzymes in apoptosis, caspases, takes place. One of those macromolecular complexes is DISC (death- inducing signaling complex) playing a central role in the induction of the extrinsic apoptosis pathway. The adaptor protein FA DD has a major role in the formation of the DISC. Therefore, inhibitors of FA DD, preventing its function in the DISC, can act as potential drugs inhibiting apoptosis. Furthermore, the study of the mechanisms of action of these inhibitors is of great interest for understanding the mechanisms of the signal transduction pathways of apoptosis. It has been reported that a natural protein inhibitor of FA DD is mucin-type 1 glycoprotein (MUC1). In particular, two fragments of the primary structure of the cytoplasmic domain of MUC1 (MUC1- CD) are capable of inhibiting the binding of caspase-8 to FA DD. However, the three-dimensional structure of MUC1 has not been obtained yet. It complicates significantly the rational design of potential drugs on the basis of these peptides. In this context, the aim of the present study was in silico prediction of
three-dimensional structures of MUC1-CD peptides corresponding to protein fragments (1-20 and 46-72), as well as analysis of their conformational properties. The main focus of the work was given to the peptide MUC1-CD (46-72), which is capable of binding to FA DD. Using the methods of molecular dynamics in the implicit water it was shown that the peptide MUC1-CD (46-72) can take conformations similar to the conformations of a number of fragments of the caspase-8 DED domain. It was found that the structure of the peptide MUC1-CD (46-72) is similar to the spatial structure of at least four fragments of caspase-8. These results indicate that the molecular mechanism of the inhibitory activity of the peptide can be explained by competitive binding with FA DD due to the structural and conformational similarity with the fragments of the caspase-8 DED domain.
About the Authors
N. V. IvanisenkoRussian Federation
I. N. Lavrik
Russian Federation
V. A. Ivanisenko
Russian Federation
References
1. Agata N., Ahmad R., Kawano T., Raina D., Kharbanda S., Kufe D. MUC1 oncoprotein blocks death receptor-mediated apoptosis by inhibiting recruitment of caspase-8. Cancer Res. 2008;68(15):6136-6144. DOI 10.1158/0008-5472.CAN-08-0464
2. Carrington P.E., Sandu C., Wei Y., Hill J.M., Morisawa G., Huang T., Gavathiotis E., Wei Y., Werner M.H. The structure of FADD and its mode of interaction with procaspase-8. Mol. Cell. 2006;22(5):599-610. DOI 10.1016/j.molcel.2006.04.018
3. Case D.A., Berryman J.T., Betz R.M., Cerutti D.S., Cheatham T.E., Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W., Homeyer N., Izadi S., Janowski P., Kaus J., Kovalenko A., Lee T.S., LeGrand S., Li P., Luchko T., Luo R., Madej B., Merz K.M., Monard G., Needham P., Nguyen H., Nguyen H.T., Omelyan I., Onufriev A., Roe D.R., Roitberg A., Salomon-Ferrer R., Simmerling C. L., Smith W., Swails J., Walker R.C., Wang J., Wolf R.M., Wu X., York D.M., Kollman P.A. AMBER 2015. University of California, San Francisco, 2015.
4. Dickens L.S., Boyd R.S., Jukes-Jones R., Hughes M.A., Robinson G. L., Fairall L., Schwabe J.W.R., Cain K., MacFarlane M. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol. Cell. 2012; 47(2):291-305. DOI 10.1016/j.molcel.2012.05.004
5. Herbert A., Sternberg M. J. E. MaxCluster – A tool for Protein Structure Comparison and Clustering. 2014. URL: http://www.sbg.bio.ic.ac.uk/~maxcluster/
6. Huang L., Chen D., Liu D., Yin L., Kharbanda S., Kufe D. MUC1 oncoprotein blocks glycogen synthase kinase 3β-mediated phosphorylation and degradation of β-catenin. Cancer Res. 2005;65(22):10413-10422. DOI 10.1158/0008-5472.CAN-05-2474
7. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22(12):2577-2637.
8. Kufe D., Inghirami G., Abe M., Hayes D., Justi-Wheeker H., Schlom J. Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma. 1984; 3:223-32. DOI 10.1089/hyb.1984.3.223.
9. Levitin F., Stern O., Weiss M., Gil-Henn C., Ziv R., Prokocimer Z., Smorodinsky N.I., Rubinstein D.B., Wreschner D.H. The MUC1 SEA module is a self-cleaving domain. J. Biol. Chem. 2005;280(39): 33374-33386. DOI 10.1074/jbc.M506047200
10. Li Y., Kuwahara H., Ren J., Wen G., Kufe D. The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3β and β- catenin. J. Biol. Chem. 2001;276(9): 6061-6064. DOI 10.1074/jbc.C000754200
11. Ligtenberg M.J., Kruijshaar L., Buijs F., Van Meijer M., Litvinov S. V., Hilkens J. Cell-associated episialin is a complex containing two proteins derived from a common precursor. J. Biol. Chem. 1992;267(9): 6171-6177.
12. Macao B., Johansson D.G., Hansson G.C., Härd T. Autoproteolysis coupled to protein folding in the SEA domain of the membranebound MUC1 mucin. Nat. Struct. Mol. Biol. 2006;13(1):71-76. DOI 10.1038/nsmb1035
13. Nguyen H., Roe D.R., Simmerling C. Improved generalized born solvent model parameters for protein simulations. J. Chem. Theory Comput. 2013;9(4):2020-2034. DOI 10.1021/ct3010485
14. Raina D., Agarwal P., Lee J., Bharti A., McKnight C.J., Sharma P., Kharbanda S., Kufe D. Characterization of the MUC1-C cytoplasmic domain as a cancer target. PLOS One. 2015;10(8):e0135156. DOI 10.1371/journal.pone.0135156
15. Raina D., Ahmad R., Kumar S., Ren J., Yoshida K., Kharbanda S., Kufe D. MUC1 oncoprotein blocks nuclear targeting of c‐Abl in the apoptotic response to DNA damage. EMBO J. 2006;25(16):3774-3783. DOI 10.1038/sj.emboj.7601263
16. Ren J., Li Y., Kufe D. Protein kinase C δ regulates function of the DF3/MUC1 carcinoma antigen in β-catenin signaling. J. Biol. Chem. 2002;277(20):17616-17622. DOI 10.1074/jbc.M200436200
17. Schleich K., Warnken U., Fricker N., Öztürk S., Richter P., Kammerer K., Schnölzer M., Karmmer P.H., Lavrik I.N. Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Mol. Cell. 2012;47(2):306-319. DOI 10.1016/j.molcel.2012.05.006
18. Shatsky M., Nussinov R., Wolfson H.J. A method for simultaneous alignment of multiple protein structures. Proteins- Structure, Function, and Bioinformatics. 2004;56(1):143-156. DOI 10.1002/ prot.10628
19. Shen C., Yue H., Pei J., Guo X., Wang T., Quan J.M. Crystal structure of the death effector domains of caspase-8. Biochem. Bioph. Res. Co. 2015;463(3):297-302. DOI 10.1016/j.bbrc.2015.05.054
20. Wei X., Xu H., Kufe D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell. 2005;7(2):167-178. DOI 10.1016/j.ccr.2005.01.008
21. Yang J.K., Wang L., Zheng L., Wan F., Ahmed M., Lenardo M.J., Wu H. Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol. Cell. 2005;20(6):939-949. DOI 10.1016/j.ccr.2005.01.008
22. Zagrovic B., Pande V. Solvent viscosity dependence of the folding rate of a small protein: distributed computing study. J. Comput. Chem. 2003;24(12):1432-1436. DOI 10.1002/jcc.10297