Влияние биопестицида Новохизоль на экспрессию генов защиты при заражении пшеницы стеблевой ржавчиной Puccinia graminis f. sp. tritici
https://doi.org/10.18699/vjgb-25-127
Аннотация
Стеблевая ржавчина, вызываемая грибом Puccinia graminis f. sp. tritici (Pgt), является вредоносным заболеванием, поражающим посевы зерновых культур. Традиционный способ борьбы с этим и другими инфекционными болезнями растений − использование химических средств защиты. В качестве их эффективной и безопасной альтернативы все чаще рассматриваются биопестициды, а также индукторы болезнеустойчивости растений, в частности на основе хитозана, производного хитина. Недавно разработана глобулярная форма хитозана − Новохизоль, имеющая ряд преимуществ и показавшая свою эффективность в предварительных полевых и лабораторных экспериментах. Однако в настоящее время отсутствуют работы, посвященные влиянию данного препарата на экспрессию генов защиты. Поэтому целью данной работы стали поиск генов, принимаю щих участие в реакции растений мягкой пшеницы Triticum aestivum L. на заражение стеблевой ржавчиной, и оценка влияния обработки препаратом Новохизоль на их транскрипцию в ходе инфекционного процесса. В качестве модели были задействованы линия пшеницы с геном устойчивости к стеблевой ржавчине Sr6 и два отобранных изолята Pgt для этой линии: авирулентный (Avr6) и вирулентный (vr6), позволяющие сопоставить эффекты препарата Новохизоль в зависимости от генетической совместимости в патосистеме растение−патоген. Для анализа уровня транскрипции генов защиты использовали листовой материал в различных временных точках, от 3 до 144 ч после инокуляции растений патогеном. Количественный ПЦР-анализ показал повышение уровня транскрипции генов CERK1, PR3, PR4, PR5, PR6 и PR9 у растений, обработанных изучаемым биопестицидом и инфицированных различными изолятами Pgt, по сравнению с необработанными инфицированными растениями. Полученные данные подтверждают, что одна из оптимальных стратегий повышения устойчивости зерновых культур к грибным патогенам с точки зрения экологической безопасности – сочетание методов селекции по генам специфической устойчивости с применением биологических средств защиты.
Ключевые слова
Об авторах
А. Б. ЩербаньРоссия
Новосибирск
А. В. Разуваева
Россия
Новосибирск
Е. С. Сколотнева
Россия
Новосибирск
В. В. Фоменко
Россия
Новосибирск
Список литературы
1. Ali S., Ahmad N., Dar M.A., Manan S., Rani A., Alghanem S.M.S., Khan K.A., Sethupathy S., Elboughdiri N., Mostafa Y.S., Alam ri S.A., Hashem M., Shahid M., Zhu D. Nano-agrochemicals as substitutes for pesticides: prospects and risks. Plants (Basel). 2023; 13(1):109. doi 10.3390/plants13010109
2. Almagro L., Gómez Ros L.V., Belchi-Navarro S., Bru R., Ros Bar celó A., Pedreño M.A. Class III peroxidases in plant defence reac tions. J Exp Bot. 2009;60(2):377-390. doi 10.1093/jxb/ern277
3. Andreeva V.A. The Enzyme Peroxidase: Participation in the Protective Mechanism of Plants. Moscow: Nauka Publ., 1988 (in Russian)
4. Bent A.F., Mackey D. Elicitors, effectors, and R genes: the new para digm and a lifetime supply of questions. Annu Rev Phytopathol. 2007;45:399-436. doi 10.1146/annurev.phyto.45.062806.094427
5. Bertini L., Leonardi L., Caporale C., Tucci M., Cascone N., Di Be rardino I., Buonocore V., Caruso C. Pathogen-responsive wheat PR4 genes are induced by activators of systemic acquired resistance and wounding. Plant Sci. 2003;164(6):1067-1078. doi 10.1016/S01689452(03)00112-2
6. Bigeard J., Colcombet J., Hirt H. Signaling mechanisms in pattern trig gered immunity (PTI). Mol Plant. 2015;8(4):521-539. doi 10.1016/j.molp.2014.12.022
7. Chai Y., Senay S., Horvath D., Pardey P. Multi-peril pathogen risks to global wheat production: a probabilistic loss and investment assessment. Front Plant Sci. 2022;13:1034600. doi 10.3389/fpls.2022.1034600
8. Conrath U. Molecular aspects of defence priming. Trends Plant Sci. 2011;16(10):524-531. doi 10.1016/j.tplants.2011.06.004
9. Cui Z., Liang F., Zhang J., Wang F., Liu D., Wang H. Transgenic ex pression of TaTLP1, a thaumatin-like protein gene, reduces suscepti bility to common root rot and leaf rust in wheat. Crop J. 2021;9(5): 1214-1218. doi 10.1016/j.cj.2021.03.021
10. Desmond O.J., Edgar C.I., Manners J.M., Maclean D.J., Schenk P.M., Kazan K. Methyl jasmonate induced gene expression in wheat de lays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiol Mol Plant Pathol. 2005;67(3-5):171 179. doi 10.1016/j.pmpp.2005.12.007
11. Ding Y., Sun T., Ao K., Peng Y., Zhang Y., Li X., Zhang Y. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in tran scriptional regulation of plant immunity. Cell. 2018;173(6):1454- 1467.e15. doi 10.1016/j.cell.2018.03.044
12. Elsharkawy M.M., Omara R.I., Mostafa Y.S., Alamri S.A., Hashem M., Alrumman S.A., Ahmad A.A. Mechanism of wheat leaf rust con trol using chitosan nanoparticles and salicylic acid. J Fungi (Basel). 2022;8(3):304. doi 10.3390/jof8030304
13. Fomenko V., Loroch V. Novochizol: a new type of cross-linked chitosan particles for formulation and parsimonious delivery of copper com pounds. In: 6th European Copper Conference in Plant Protection, Berlin, Germany, 17–18 November 2021. Berlin: IFOAM Organics Europe, 2021. Available online: https://www.boelw.de/fileadmin/user_upload/Dokumente/Veranstaltungen/Kupfertagung_2021/copper_novochizol.pdf
14. Gao C., Kou X., Li H., Zhang J., Saad A., Liao Y. Inverse effects of Arabidopsis NPR1 gene on fusarium seedling blight and fusarium head blight in transgenic wheat. Plant Pathol. 2013;62(2):383-392. doi 10.1111/J.1365-3059.2012.02656.x
15. Gong B.Q., Wang F.Z., Li J.F. Hide-and-seek: chitin-triggered plant im munity and fungal counterstrategies. Trends Plant Sci. 2020;25(8): 805-816. doi 10.1016/j.tplants.2020.03.006
16. Grenier J., Potvin C., Trudel J., Asselin A. Some thaumatin-like pro teins hydrolyse polymeric β-1,3-glucans. Plant J. 1999;19(4):473 480. doi 10.1046/j.1365-313x.1999.00551.x
17. Hafeez A.N., Arora S., Ghosh S., Gilbert D., Bowden R.L., Wulff B.B.H. Creation and judicious application of a wheat resistance gene atlas. Mol Plant. 2021;14(7):1053-1070. doi 10.1016/j.molp.2021.05.014
18. Hammond-Kosack K.E., Gones J.D.G. Resistance gene dependent plant defence responses. Plant Cell. 1996;8(10):1773-1791. doi 10.1105/tpc.8.10.1773
19. Hao G., Tiley H., McCormick S. Chitin triggers tissue-specific immunity in wheat associated with Fusarium head blight. Front Plant Sci. 2022;13:832502. doi 10.3389/fpls.2022.832502
20. He R., Wu J., Zhang Y., Agüero C.B., Li X., Liu S., Wang C., Wal ker M.A., Lu J. Overexpression of a thaumatin-like protein gene from Vitis amurensis improves downy mildew resistance in Vitis vi nifera grapevine. Protoplasma. 2017;254:1579-1589. doi 10.1007/s00709-016-1047-y
21. Jones J.D.G., Dangl J.L. The plant immune system. Nature. 2006; 444(7117):323-329. doi 10.1038/nature05286
22. Katiyar D., Hemantaranjan A., Singh B., Bhanu A.N. A future perspec tive in crop protection: chitosan and its oligosaccharides. Adv Plants Agric Res. 2014;1(1):23-30. doi 10.15406/apar.2014.01.00006
23. Lee W.S., Rudd J.J., Hammond-Kosack K.E., Kanyuka K. Mycosphae rella graminicola LysM effector-mediated stealth pathogenesis sub verts recognition through both CERK1 and CEBiP homologues in wheat. Mol Plant Microbe Interact. 2014;27(3):236-243. doi 10.1094/MPMI-07-13-0201-R
24. Ma Z., Yang L., Yan H., Kennedy J.F., Meng X. Chitosan and oligochi tosan enhance the resistance of peach fruit to brown rot. Carbohydr Polym. 2013;94(1):272-277. doi 10.1016/j.carbpol.2013.01.012
25. Maluin F.N., Hussein M.Z. Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules. 2020;25(7): 1611. doi 10.3390/molecules25071611
26. Manjunatha G., Roopa K.S., Prashanth G.N., Shetty H.S. Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defence-related enzyme activation. Pest Manag Sci. 2008;64(12):1250-1257. doi 10.1002/ps.1626
27. McIntosh R.A., Dubcovsky J., Rogers W.J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat: 2011 supplement. IWGS, 2011. Available online: http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2011.pdf
28. Ngou B.P.M., Ahn H.K., Ding P., Jones J.D. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature. 2021;592(7852):110-115. doi 10.1038/s41586-021-03315-7
29. Orlova E.A., Bekhtold N.P., Shcherban A.B., Fomenko V.V. The effect of new biological products based on Novochizol on the condition of spring common wheat crops. Zernovoe Hozyajstvo Rossii = Grain Economy of Russia. 2025;17(2):86-93. doi 10.31367/2079-87252025-97-2-86-93 (in Russian)
30. Patpour M., Hovmøller M.S., Rodriguez-Algaba J., Randazzo B., Vil legas D., Shamanin V.P., Berlin A., … Meyer K.J.G., Valade R., Thach T., Hansen J.G., Justesen A.F. Wheat stem rust back in Europe: diversity, prevalence and impact on host resistance. Front Plant Sci. 2022;13:882440. doi 10.3389/fpls.2022.882440
31. Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. doi 10.1093/nar/29.9.e45
32. Pritsch C., Muehlbauer G.J., Bushnell W.R., Somers D.A., Vance C.P. Fungal development and induction of defence response genes during early infection of wheat spikes by Fusarium graminearum. Mol Plant Microbe Interact. 2000;13(2):159-169. doi 10.1094/MPMI.2000.13.2.159
33. Ray S., Anderson J.M., Urmeev F.I., Goodwin S.B. Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Mol Biol. 2003;53(5):701-714. doi 10.1023/B:PLAN.0000019120.74610.52
34. Roelfs A.P., Singh R.P., Saari E.E. Rust diseases of wheat: concepts and methods of disease management. Mexico: CIMMYT, 1992
35. Ruijter J.M., Ramakers C., Hoogaars W.M.H., Karlen Y., Bakker O., van den Hoff M.J.B., Moorman A.F.M. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37(6):e45. doi 10.1093/nar/gkp045
36. Ryan C.A. The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta. 2000;1477(1-2):112 121. doi 10.1016/s0167-4838(99)00269-1
37. Sanin S.S. Epiphytoties of Diseases of Grain Crops: Theory and Prac tice. Moscow, 2012 (in Russian)
38. Scherer N.M., Thompson C.E., Freitas L.B., Bonatto S.L. Patterns of molecular evolution in pathogenesis-related proteins. Genet Mol Biol. 2005;28(4):645-653. doi 10.1590/S1415-47572005000500001
39. Sels J., Mathys J., De Coninck B.M., Cammue B.P., De Bolle M.F. Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem. 2008;46(11):941-950. doi 10.1016/j.plaphy.2008.06.011
40. Shcherban A.B., Skolotneva E.S., Fedyaeva A.V., Boyko N.I., Fomen ko V.V. Effect of biopesticide Novochizol on development of stem rust Puccinia graminis f. sp. tritici in wheat, T. aestivum L. Plants. 2024;13(23):3455. doi 10.3390/plants13233455
41. Shcherban A.B. Chitosan and its derivatives as promising plant protec tion tools. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2023;27(8):1010-1021. doi 10.18699/VJGB-23-116
42. Shcherban A.B., Plotnikova L.Ya., Knaub V.V., Skolotneva E.S., Fo menko V.V. Cyto-physiological manifestations of protective reac tions of wheat against stem rust, induced by the biofungicide No vochizol. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2025;29(4):539-548. doi 10.18699/vjgb-25-57
43. Skolotneva E.S., Kelbin V.N., Morgunov A.I., Boyko N.I., Shamanin V.P., Salina E.A. Races composition of the Novosibirsk population of Puccinia graminis f. sp. tritici. Mykologiya i Fitopatologiya = Mycology and Phytopathology. 2020;54(1):49-58. doi 10.31857/S0026364820010092 (in Russian)
44. Tada Y., Spoel S.H., Pajerowska-Mukhtar K., Mou Z., Song J., Wang C., Zuo J., Dong X. Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science. 2008;321(5891):952-956. doi 10.1126/science.1156970
45. Tarchevskij I.A. Signal systems of plant’s cells. Moscow: Nauka Publ., 2002 (in Russian)
46. Teplyakova O.I., Fomenko V.V., Salakhutdinov N.F., Vlasenko N.G. Novochizol™ seed treatment: effects on germination, growth and development in soft spring wheat. Nat Prod Chem Res. 2022; 10(5):1-4. doi 10.35248/naturalproducts.10.5.1-04
47. Tsilo T.J., Chao S., Jin Y., Anderson J.A. Identification and validation of SSR markers linked to the stem rust resistance gene Sr6 on the short arm of chromosome 2D in wheat. Theor Appl Genet. 2009; 118(3):515-524. doi 10.1007/s00122-008-0917-x
48. Van der Bulcke C., Bauw G., De Rucke R., Castresana C. The role of vacuolar and secreted pathogenesis-related B (1-3)-gluconases and chitinases in the defense response of plants. Bull Soc Bot Fr. 1990;137(3-4):51-63. doi 10.1080/01811789.1990.10827029
49. Van Loon L.C., Van Strien E.A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol. 1999;55(2):85-97. doi 10.1006/pmpp.1999.0213
50. Van Loon L.C., Rep M., Pieterse C.M.J. Significance of induc ible defense-related proteins in infected plants. Annu Rev Phyto pathol. 2006;44:135-162. doi 10.1146/annurev.phyto.44.070505.143425
51. Varlamov V.P., Ilyina A.V., Shagdarova B.Ts., Lunkov A.P., Mysyakina I.S. Chitin/chitosan and its derivatives: fundamental problems and practical approaches. Biochemistry. 2020;85:154-176. doi 10.1134/s0006297920140084
52. Wang L., He Y., Guo G., Xia X., Dong Y., Zhang Y., Wang Y., Fan X., Wu L., Zhou X., Zhang Z., Li G. Overexpression of plant chi tin receptors in wheat confers broad-spectrum resistance to fun gal diseases. Plant J. 2024;120(3):1047-1063. doi 10.1111/tpj.17035
53. Wang X., Tang C., Deng L., Cai G., Liu X., Liu B., Han Q., Buche nauer H., Wei G., Han D., Huang L., Kang Z. Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiol Plant. 2010;139(1):27-38. doi 10.1111/j.1399-3054.2009.01338.x
54. Ward E.R., Uknes S.J., Williams S.C., Dincher S.S., Wiederhold D.L., Alexander D.C., Ahl-Goy P., Metraux J.P., Ryalset J.A. Coordi nate gene activity in response to agents that induce systemic ac quired resistance. Plant Cell. 1991;3(10):1085-1094. doi 10.1105/tpc.3.10.1085






