Differential expression profile of DREB2 subfamily transcription factor genes in the dynamics of salt stress and post-stress recovery in tomato plants
https://doi.org/10.18699/vjgb-25-128
Abstract
In response to stress, epigenetic modifications occur in the plant genome, which together form a stress memory that can be inherited and increases the efficiency of the plant's defense response to repeated stress events. Genes whose expression becomes the target of epigenetic modifications serve as biomarkers of stress memory. Their characteristic features are considered to be an expression profile that differs between responses to primary and repeated stress events, as well as long-term retention of changes after the stress is canceled. Tomato (Solanum lycopersicum L.) is an important vegetable crop whose yield decreases with soil salinity. Genes induced by salt stress include genes encoding transcription factors of the DREB2 (DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 2) subfamily. In this work, we evaluated the SlDREB2 genes of tomato as possible marker genes of salt stress memory. The expression of the genes SlDREB16, 20, 22, 24, 43, 44 and 46 was determined in the leaves of two plant varieties (Gnom, Otradnyi) with different degrees of salt tolerance in response to 24 h of NaCl exposure and in the dynamics of a long-term (14 days) post-stress recovery period. Significant genotype-specific fluctuations in the levels of gene transcripts were revealed both in the control and in the stressed plants. It was shown that during the long-term memory phase, gene expression returns to the control values either temporarily (SlDREB24, 44 and 46 in the moderately resistant Gnom variety after 7 days; after 14 days, the expression changed again) or slowly (SlDREB16 and 43 in the highly resistant Otradnyi variety after 14 days of recovery). Only two genes (SlDREB22 and 46) showed a similar between varieties pattern of expression fluctuations in the dynamics of stress and recovery, and the SlDREB20 gene was not expressed in either the control or the experiment. The data obtained suggest that the SlDREB2 subfamily genes (except SlDREB20) are involved in the response of S. lycopersicum to salt stress in a genotype-specific manner and can serve as markers of stress memory linked to the epigenetic regulation of tomato adaptation to salt stress. The SlDREB16, 28, 43 and 44 genes may contribute to the determination of differences in the mechanism of regulation of plant response to salt stress between salt-tolerant genotypes of S. lycopersicum. The obtained results can form the basis for further studies of the role of SlDREB2 genes in the epigenetic regulation of tomato plant adaptation to salt stress, which can be used in breeding salt-tolerant varieties.
Keywords
About the Authors
M. A. FilyushinRussian Federation
Moscow
A. V. Shchennikova
Russian Federation
Moscow
E. Z. Kochieva
Russian Federation
Moscow
References
1. Aina O., Bakare O.O., Fadaka A.O., Keyster M., Klein A. Plant bio markers as early detection tools in stress management in food crops: A review. Planta. 2024;259(3):60. doi 10.1007/s00425-024-04333-1
2. Akbudak M.A., Filiz E., Kontbay K. DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): genome-wide identification, characterization and expression profiles under cadmium and salt stresses. 3 Biotech. 2018;8(10):426. doi 10.1007/s13205-018-1454-1
3. Anisimova O.K., Shchennikova A.V., Kochieva E.Z., Filyushin M.A. Identification of chalcone synthase genes from garlic (Allium sati vum L.) and their expression levels in response to stress factors. Acta Nat. 2025;17(2):4-14. doi 10.32607/actanaturae.27639
4. Bai Y., Sunarti S., Kissoudis C., Visser R.G.F., van der Linden C.G. The role of tomato WRKY genes in plant responses to combined abio tic and biotic stresses. Front Plant Sci. 2018;9:801. doi 10.3389/fpls.2018.00801
5. Baillo E.H., Kimotho R.N., Zhang Z., Xu P. Transcription factors asso ciated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes (Basel). 2019;10(10):771. doi 10.3390/genes10100771
6. Bäurle I., Trindade I. Chromatin regulation of somatic abiotic stress memory. J Exp Bot. 2020;71(17):5269-5279. doi 10.1093/jxb/eraa098
7. Borsani O., Cuartero J., Fernández J.A., Valpuesta V., Botella M.A. Identification of two loci in tomato reveals distinct mechanisms for salt tolerance. Plant Cell. 2001;13(4):873-887. doi 10.1105/tpc.13.4.873
8. Calone R., Mircea D.M., González-Orenga S., Boscaiu M., Zuzunaga Rosas J., Barbanti L., Vicente O. Effect of recurrent salt and drought stress treatments on the endangered halophyte Limonium anguste bracteatum Erben. Plants (Basel). 2023;12(1):191. doi 10.3390/plants12010191
9. Chen Y., Li C., Yi J., Yang Y., Lei C., Gong M. Transcriptome response to drought, rehydration and re-dehydration in potato. Int J Mol Sci. 2019;21(1):159. doi 10.3390/ijms21010159
10. Ding Y., Liu N., Virlouvet L., Riethoven J.J., Fromm M., Avramova Z. Four distinct types of dehydration stress memory genes in Arabi dopsis thaliana. BMC Plant Biol. 2013;13:229. doi 10.1186/14712229-13-229
11. Ding Y., Virlouvet L., Liu N., Riethoven J.J., Fromm M., Avramova Z. Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana. BMC Plant Biol. 2014;14:141. doi 10.1186/ 1471-2229-14-141
12. Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003;33(4):751-763. doi 10.1046/j.1365-313x.2003.01661.x
13. Efremov G.I., Slugina M.A., Shchennikova A.V., Kochieva E.Z. Dif ferential regulation of phytoene synthase PSY1 during fruit caro tenogenesis in cultivated and wild tomato species (Solanum section Lycopersicon). Plants (Basel). 2020;9(9):1169 doi 10.3390/plants9091169
14. Filyushin M.A., Shagdarova B.T., Shchennikova A.V., Il’ina A.V., Kochieva E.Z., Varlamov V.P. Pretreatment with chitosan prevents Fusarium infection and induces the expression of chitinases and β-1,3-glucanases in garlic (Allium sativum L.). Horticulturae. 2022; 8(5):383. doi 10.3390/horticulturae8050383
15. Filyushin M.A., Anisimova O.K., Shchennikova A.V., Kochieva E.Z. DREB1 and DREB2 genes in garlic (Allium sativum L.): Genome wide identification, characterization, and stress response. Plants (Basel). 2023;12(13):2538. doi 10.3390/plants12132538
16. Friedrich T., Faivre L., Bäurle I., Schubert D. Chromatin-based mecha nisms of temperature memory in plants. Plant Cell Environ. 2019; 42(3):762-770. doi 10.1111/pce.13373
17. Gallusci P., Agius D.R., Moschou P.N., Dobránszki J., Kaiserli E., Mar tinelli F. Deep inside the epigenetic memories of stressed plants. Trends Plant Sci. 2023;28(2):142-153. doi 10.1016/j.tplants.2022.09.004 Guo M., Wang X.S., Guo H.D., Bai S.Y., Khan A., Wang X.M., Gao Y.M., Li J.S. Tomato salt tolerance mechanisms and their po tential applications for fighting salinity: A review. Front Plant Sci. 2022;13:949541. doi 10.3389/fpls.2022.949541
18. Hassan S., Berk K., Aronsson H. Evolution and identification of DREB transcription factors in the wheat genome: modeling, docking and simulation of DREB proteins associated with salt stress. J Biomol Struct Dyn. 2022;40(16):7191-7204. doi 10.1080/07391102.2021.1894980
19. Ismail A.M., Horie T. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu Rev Plant Biol. 2017; 68:405-434. doi 10.1146/annurev-arplant-042916-040936 Jacques C., Salon C., Barnard R.L., Vernoud V., Prudent M. Drought stress memory at the plant cycle level: A review. Plants (Basel). 2021;10(9):1873. doi 10.3390/plants10091873
20. Kudo M., Kidokoro S., Yoshida T., Mizoi J., Todaka D., Fernie A.R., Shinozaki K., Yamaguchi-Shinozaki K. Double overexpression of DREB and PIF transcription factors improves drought stress toler ance and cell elongation in transgenic plants. Plant Biotechnol J. 2017;15(4):458-471. doi 10.1111/pbi.12644
21. Maqsood H., Munir F., Amir R., Gul A. Genome-wide identification, comprehensive characterization of transcription factors, cis-regu latory elements, protein homology, and protein interaction network of DREB gene family in Solanum lycopersicum. Front Plant Sci. 2022;13:1031679. doi10.3389/fpls.2022.1031679
22. Matsukura S., Mizoi J., Yoshida T., Todaka D., Ito Y., Maruyama K., Shinozaki K., Yamaguchi-Shinozaki K. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics. 2010;283(2):185-196. doi 10.1007/s00438-009-0506-y
23. Shi Y., Ding Y., Yang S. Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci. 2018;23(7):623-637. doi 10.1016/j.tplants.2018.04.002
24. Sun N., Sun X., Zhou J., Zhou X., Gao Z., Zhu X., Xu X., Liu Y., Li D., Zhan R., Wang L., Zhang H. Genome-wide characterization of pep per DREB family members and biological function of CaDREB32 in response to salt and osmotic stresses. Plant Physiol Biochem. 2025;222:109736. doi 10.1016/j.plaphy.2025.109736
25. Villagómez-Aranda A.L., Feregrino-Pérez A.A., García-Ortega L.F., González-Chavira M.M., Torres-Pacheco I., Guevara-González R.G. Activating stress memory: eustressors as potential tools for plant breeding. Plant Cell Rep. 2022;41(7):1481-1498. doi 10.1007/s00299-022-02858-x
26. Virlouvet L., Avenson T.J., Du Q., Zhang C., Liu N., Fromm M., Avramova Z., Russo S.E. Dehydration stress memory: gene networks linked to physiological responses during repeated stresses of Zea mays. Front Plant Sci. 2018;9:1058. doi 10.3389/fpls.2018.01058
27. Zhu Z., Dai Y., Yu G., Zhang X., Chen Q., Kou X., Mehareb E.M., Raza G., Zhang B., Wang B., Wang K., Han J. Dynamic physiological and transcriptomic changes reveal memory effects of salt stress in maize. BMC Genomics. 2023;24(1):726. doi 10.1186/s12864023-09845-w
28. Zuo D.D., Ahammed G.J., Guo D.L. Plant transcriptional memory and associated mechanism of abiotic stress tolerance. Plant Physiol Bio chem. 2023;201:107917. doi 10.1016/j.plaphy.2023.107917
Review
JATS XML






