A review of simulation and modeling approaches in microbiology
https://doi.org/10.18699/VJ15.095
Abstract
Bacterial communities are tightly interconnected systems consisting of numerous species making it challenging to analyze their structure and relations. There are several experimental techniques providing heterogeneous data concerning various aspects of this object. A recent avalanche of metagenomic data challenges not only biostatisticians but also biomodelers, since these data are essential to improve the modeling quality while simulation methods are useful to understand the evolution of microbial communities and their function in the ecosystem. An outlook on the existing modeling and simulation approaches based on different types of experimental data in the field of microbial ecology and environmental microbiology is presented. A number of approaches focusing on a description of such microbial community aspects as its trophic structure, metabolic and population dynamics, genetic diversity as well as spatial heterogeneity and expansion dynamics is considered. We also propose a classification of the existing software designed for simulation of microbial communities. It is shown that although the trend for using multiscale/hybrid models prevails, the integration between models concerning different levels of biological organization of communities still remains a problem to be solved. The multiaspect nature of integration approaches used to model microbial communities is based on the need to take into account heterogeneous data obtained from various sources by applying high-throughput genome investigation methods.
About the Authors
A. I. KlimenkoRussian Federation
Z. S. Mustafin
Russian Federation
A. D. Chekantsev
Russian Federation
R. K. Zudin
Russian Federation
Yu. G. Matushkin
Russian Federation
S. A. Lashin
Russian Federation
References
1. Adler J. Chemotaxis in bacteria. J. Supramol. Struct. 1976;4:305-317. DOI 10.1146/annurev.bi.44.070175.002013
2. Beardmore R.E., Gudelj I., Lipson D.A., Hurst L.D. Metabolic tradeoffs and the maintenance of the ttest and the flattest. Nature. 2011;472:342-346. DOI 10.1038/nature09905
3. Beslon G., Parsons D.P., Sanchez-Dehesa ., Peсa J.-M., Knibbe C. Scaling laws in bacterial genomes: a side-effect of selection of mutational robustness? Biosystems. 2010;102:32-40. DOI 10.1016/j.biosystems.2010.07.009
4. Chernavskiy D.S., Ierusalimskiy N.D. On the determinant link in the system of enzyme reactions. Izvestiya AN SSSR, seriya biologiya = Proceedings of USSR Academy of Sciences. Biology. 1965;5:665-672.
5. Chewapreecha C. Your gut microbiota are what you eat. Nat. Rev. Microbiol. 2013;12:8. DOI 10.1038/nrmicro3186
6. Comolli L.R. Intra- and inter-species interactions in microbial communities. Front. Microbiol. 2014;5:1-3. DOI 10.3389/fmicb.2014.00629
7. Covert M.W., Schilling C.H., Famili I., Edwards J.S., Goryanin I.I., Selkov E., Palsson B.O. Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 2001;26:179-186. DOI 10.1016/S0968-0004(00)01754-0
8. De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 2002;9:67-103. DOI 10.1089/10665270252833208
9. De Roy K., Marzorati M., Van den Abbeele P., Van de Wiele T., Boon N. Synthetic microbial ecosystems: An exciting tool to understand and apply microbial communities. Environ. Microbiol. 2013;16:1472- 1481. DOI 10.1111/1462-2920.12343
10. DeAngelis D.L., Mooij W.M. Individual-based modeling of ecological and evolutionary processes 1. Annu. Rev. Ecol. Evol. Syst. 2005;36:147-168. DOI 10.1146/annurev.ecolsys.36.102003.152644
11. Durot M., Bourguignon P.-Y., Schachter V. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol. Rev. 2009;33:164-190. DOI 10.1111/j.1574-6976.2008.00146.x
12. Emonet T., Macal C.M., North M.J., Wickersham C.E., Cluzel P. Agent-Cell: a digital single-cell assay for bacterial chemotaxis. Bioinformatics. 2005;21:2714-2721. DOI 10.1093/bioinformatics/bti391
13. Esteban P.G., Rodríguez-Patón A. Simulating a Rock-Scissors-Paper Bacterial Game with a Discrete Cellular Automaton. New Challenges on Bioinspired Applications, Lecture Notes in Computer Science. Eds J.M. Ferràndez, J.R. Álvarez Sànchez, F. de la Paz, F.J. Toledo. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. DOI 10.1007/978-3-642-21326-7
14. Faust K., Raes J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 2012;10:538-550. DOI 10.1038/nrmicro2832
15. Frey E. Evolutionary game theory: Theoretical concepts and applications to microbial communities. Phys. A Stat. Mech. its Appl. 2010; 389:4265-4298. DOI 10.1016/j.physa.2010.02.047
16. Fuhrman J.A. Microbial community structure and its functional implications. Nature. 2009;459:193-199. DOI nature08058 [pii]\n10.1038/nature08058 [doi]
17. Gimel’farb A.A., Ginzburg L.R., Poluektov R.A., Pykh Yu.A., Ratner V.A. Dinamicheskaya teoriya biologicheskikh populyatsiy [Dynamic theory of biological populations]. Moscow, Nauka, 1974.
18. Ginovart M., López D., Valls J. INDISIM, an individual-based discrete simulation model to study bacterial cultures. J. Theor. Biol. 2002; 214:305-319. DOI 10.1006/jtbi.2001.2466
19. Grimm V., Berger U., Bastiansen F., Eliassen S., Ginot V., Giske J., Goss-Custard J., Grand T., Heinz S.K., Huse G., Huth A., Jepsen J. U., Jørgensen C., Mooij W.M., Müller B., Pe’er G., Piou C., Railsback S.F., Robbins A.M., Robbins M.M., Rossmanith E., Rüger N., Strand E., Souissi S., Stillman R. a., Vabø R., Visser U., DeAngelis D.L. A standard protocol for describing individual-based and agent-based models. Ecol. Modell. 2006;198:115-126. DOI 10.1016/j.ecolmodel.2006.04.023
20. Halfen L.N., Castenholz R.W. Gliding motility in the blue-green alga oscillatoria princeps. 1971.
21. Hecker M., Lambeck S., Toepfer S., van Someren E., Guthke R. Gene regulatory network inference: Data integration in dynamic models–A review. Biosystems. 2009;96:86-103. DOI 10.1016/j.biosystems.2008.12.004
22. Henrichsen J. Bacterial Surface Translocation: a Survey and a Classification. Bacteriol. Rev. 1972;36:478-503.
23. Henson M.A., Hanly T.J. Dynamic flux balance analysis for synthetic microbial communities. IET Syst. Biol. 2014;8:214-229. DOI 10.1049/iet-syb.2013.0021
24. Ishii N., Robert M., Nakayama Y., Kanai A., Tomita M. Toward largescale modeling of the microbial cell for computer simulation. J. Biotechnol. 2004;113:281-294. DOI 10.1016/j.jbiotec.2004.04.038
25. Karr J.R., Sanghvi J.C., MacKlin D.N., Gutschow M.V., Jacobs J.M., Bolival B., Assad-Garcia N., Glass J.I., Covert M.W. A wholecell computational model predicts phenotype from genotype. Cell. 2012;150:389-401. DOI 10.1016/j.cell.2012.05.044
26. Karunakaran E., Mukherjee J., Ramalingam B., Biggs C.A. «Biofilmology »: a multidisciplinary review of the study of microbial biofilms. Appl. Microbiol. Biotechnol. 2011;90:1869-1881. DOI 10.1007/s00253-011-3293-4
27. Klimenko A.I., Matushkin Y.G., Kolchanov N.A., Lashin S.A. Modeling evolution of spatially distributed bacterial communities: a simulation with the haploid evolutionary constructor. BMC Evol. Biol. 2015;15:S3. DOI 10.1186/1471-2148-15-S1-S3
28. Klitgord N., Segre D. Environments that induce synthetic microbial ecosystems. PLoS Comput. Biol. 2010;101:1435-1439. DOI 10.1371/Citation
29. Knibbe C., Fayard J.-M., Beslon G. The topology of the protein network influences the dynamics of gene order: from systems biology to a systemic understanding of evolution. Artif. Life. 2008;14:149- 156. DOI 10.1162/artl.2008.14.1.149
30. Kolmakova O.V. Contemporary Methods for Identification of Bacterioplankton Species- Specific Biogeochemical Functions. Zhurnal sibirskogo federalnogo universiteta. Biologiya = Journal of Siberian Federal University. Biology. 2013;6(1):73-95.
31. Kutalik Z., Razaz M., Baranyi J. Connection between stochastic and deterministic modelling of microbial growth. J. Theor. Biol. 2005;232:285-299. DOI 10.1016/j.jtbi.2004.08.013
32. Larsen P., Hamada Y., Gilbert J. Modeling microbial communities: Current, developing, and future technologies for predicting microbial community interaction. J. Biotechnol. 2012;160:17-24. DOI 10.1016/j.jbiotec.2012.03.009
33. Laspidou C.S., Rittmann B.E. Evaluating trends in biofilm density using the UMCCA model. Water Res. 2004;38:3362-33672. DOI 10.1016/j.watres.2004.04.051
34. Lencastre Fernandes R., Nierychlo M., Lundin L., Pedersen A.E., Puentes Tellez P.E., Dutta A., Carlquist M., Bolic A., Schäpper D., Brunetti A.C., Helmark S., Heins A.L., Jensen A.D., Nopens I., Rottwitt K., Szita N., van Elsas J.D., Nielsen P.H., Martinussen J., Sørensen S.J., Lantz A.E., Gernaey K.V. Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol. Adv. 2011;29:575-599. DOI 10.1016/j.biotechadv.2011.03.007
35. Leslie P.H. On the use of matrices in certain population mathematics. Biometrika. 1945. DOI 10.2307/2332297
36. Likhoshvay V.A., Khlebodarova T.M., Ratushnyy A.V., Lashin S.A., Turnaev I.I., Podkolodnaya O.A., Anan’ko E.A., Smirnova O.G., Ibragimova S.S., Kolchanov N.A. Kompyuternyy geneticheskiy konstruktor: matematicheskoe modelirovanie geneticheskikh i metabolicheskikh podsistem E. soli [Computer-based genetic constructor: mathematical modelling of genetic and metabolic subsystems of E. coli]. Rol mikroorganizmov v funktsionirovanii zhivykh sistem: fundamentalnye problemy i bioinzhenernye prilozheniya [Role of Microorganisms in Living Systems Functioning: Fundamental Problems and Bioengineering Applications]. Eds: Vlasov V.V., Degermendzhi A.G., Kolchanov N.A., Parmon V.N., Repin E.A. Novosibirsk, Izdatel’stvo SO RAN, 2010:376-391.
37. Likhoshvai V.A., Ratushny A.V. Generalized Hill function method for modeling molecular processes. J. Bioinform. Comput. Biol. 2007;05: 521-531. DOI 10.1142/S0219720007002837
38. Logofet, D.O., Belova, I.N., 2007. Nonnegative matrices as a tool to model population dynamics: Classical models and contemporary expansions. Fundamentalnaya i prikladnaya matematika = Fundamental and Applied Mathematics. 2007;13:145-164. DOI:10.1007/s10958-008-9249-2
39. Mahadevan R., Henson M.A. Genome-based modeling and design of metabolic interactions in microbial communities. Comput. Struct. Biotechnol. J. 2012;3:1-7. DOI 10.5936/csbj.201210008
40. Mburu N., Rousseau D.P.L., Stein O.R., Lens P.N.L. Simulation of batch-operated experimental wetland mesocosms in AQUASIM biofilm reactor compartment. J. Environ. Manage. 2014;134:100-108. DOI 10.1016/j.jenvman.2014.01.005
41. Monod J. La technique de culture continue. Theorie et applications. Ann. Inst. Pasteur. 1950;79:391-410.
42. Netrusov A.I., Kotova I.B., 2007. Mikrobiologiya [Microbiology]. Moscow, Akademiya, 2007.
43. Niu B., Wang H., Duan Q., Li L. Biomimicry of quorum sensing using bacterial lifecycle model. BMC Bioinformatics. 2013;14(Suppl. 8): S8. DOI 10.1186/1471-2105-14-S8-S8
44. O’Donnell A.G., Young I.M., Rushton S.P., Shirley M.D., Crawford J. W. Visualization, modelling and prediction in soil microbiology. Nat. Rev. Microbiol. 2007;5:689-699. DOI 10.1038/nrmicro1714
45. Oberhardt M.A., Palsson B.Ø., Papin J.A. Applications of genomescale metabolic reconstructions. Mol. Syst. Biol. 2009;5. DOI 10.1038/msb.2009.77
46. Pfeiffer T., Schuster S. Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem. Sci. 2005;30: 20-25. DOI 10.1016/j.tibs.2004.11.006
47. Price N.D., Reed J.L., Palsson B.Ø. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2004;2:886-897. DOI 10.1038/nrmicro1023
48. Ramkrishna D. Population Balances: Theory and Applications to Particulate Systems in Engineering, Chemical Engineering. 2000.
49. Riznichenko G.Yu. Matematicheskie modeli v biofizike i ekologii [Mathematical models in biophysics and ecology]. Moscow; Izhevsk, Institut kompyuternykh issledovaniy, 2003.
50. Riznichenko G.Yu., Rubin A.B. Matematicheskie modeli biologicheskikh produktsionnykh protsessov [Mathematical models of biological production processes]. Moscow, MGU Publ., 1993.
51. Rudge T.J., Steiner P.J., Phillips A., Haseloff J. Computational modeling of synthetic microbial biofilms. ACS Synthetic Biology 2012;1(8): 345-352. DOI 10.1021/sb300031n
52. Salli K.M., Ouwehand A.C. The use of in vitro model systems to study dental biofilms associated with caries: a short review. J. Oral Microbiol. 2015;7. DOI 10.3402/jom.v7.26149
53. Sauer U., Heinemann M., Zamboni N. GENETICS: getting closer to the whole picture. Science. 2007;316:550-551. DOI 10.1126/science.1142502
54. Scheffer M., Baveco J.M., DeAngelis D.L., Rose K.A., van Nes E.H. Super-individuals a simple solution for modelling large populations on an individual basis. Ecol. Modell. 1995;80:161-170. DOI 10.1016/0304-3800(94)00055-M
55. Scheibe T.D., Mahadevan R., Fang Y., Garg S., Long P.E., Lovley D.R. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2009;2:274-286. DOI 10.1111/j.1751-7915.2009.00087.x
56. Schuster S., Fell D.A., Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 2000;18:326-332. DOI 10.1038/73786
57. Segrè D., Vitkup D., Church G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA. 2002;99: 15112-15117. DOI 10.1073/pnas.232349399
58. Shrout J.D. A fantastic voyage for sliding bacteria. Trends Microbiol. 2015;23:244-246. DOI 10.1016/j.tim.2015.03.001
59. Song H.-S., Cannon W., Beliaev A., Konopka A. Mathematical modeling of microbial community dynamics: a methodological review. Processes. 2014;2:711-752. DOI 10.3390/pr2040711
60. Stauffer D., Kunwar A., Chowdhury D. Evolutionary ecology in silico: Evolving food webs, migrating population and speciation. Physica A. 2005;352:202-215. DOI 10.1016/j.physa.2004.12.036
61. Tang Y., Valocchi A.J. An improved cellular automaton method to model multispecies biofilms. Water Res. 2013;47:5729-5742. DOI 10.1016/j.watres.2013.06.055
62. Tindall M.J., Maini P.K., Porter S.L., Armitage J.P. Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations. Bull. Math. Biol. 2008a. DOI 10.1007/s11538-008-9322-5
63. Tindall M.J., Porter S.L., Maini P.K., Gaglia G., Armitage J.P. Overview of mathematical approaches used to model bacterial chemotaxis I: The single cell. Bull. Math. Biol. 2008b. DOI 10.1007/s11538-008-9321-6
64. Tomita M. Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 2001;19:205-210. DOI 10.1016/S0167-7799(01)01636-5
65. Tomita M., Hashimoto K., Takahashi K., Shimizu T., Matsuzaki Y., Miyoshi F., Saito K., Tanida S., Yugi K., Venter J., Hutchison C. E-CELL: software environment for whole-cell simulation. Bioinformatics. 1999;15:72-84. DOI 10.1093/bioinformatics/15.1.72
66. Turing A.M. The chemical theory of morphogenesis. Phil. Trans. Roy. Soc. 1952;13:1.
67. Wanner O., Morgenroth E. Biofilm modeling with AQUASIM. Water Sci. Technol. 2004;49:137-144.
68. Wimpenny J., Manz W., Szewzyk U. Heterogeneity in biofilms. FEMS Microbiol. Rev. 2000. DOI 10.1016/S0168-6445(00)00052-8
69. Wimpenny J.W.T., Colasanti R. A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol. Ecol. 1997. DOI 10.1016/S0168-6496(96)00078-5
70. Wolfe B.E., Dutton R.J. Review fermented foods as experimentally tractable microbial ecosystems. Cell. 2015;161:49-55. DOI 10.1016/j.cell.2015.02.034
71. Wooley J.C., Godzik A., Friedberg I. A primer on metagenomics. PLoS Comput. Biol. 2010. DOI 10.1371/journal.pcbi.1000667
72. Zomorrodi A.R., Islam M.M., Maranas C.D. D-OptCom: dynamic multi-level and multi- objective metabolic modeling of microbial communities. ACS Synth. Biol. 2014;3:247- 257. DOI 10.1021/sb4001307
73. Zomorrodi A.R., Maranas C.D. OptCom: A multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 2012;8. DOI 10.1371/journal.pcbi.1002363