Решения проблем фолдинга белков для повышения эффективности дрожжевых биопродуцентов
https://doi.org/10.18699/vjgb-25-140
Аннотация
За последние несколько десятилетий дрожжи стали наиболее эффективными биопродуцентами рекомбинантных белков с различными потребительскими свойствами. Это стало возможным благодаря их экономически выгодным характеристикам и успешному применению генно-инженерных технологий. Кроме того, дрожжи обладают консервативным для эукариотических организмов механизмом посттрансляционной модификации белков, который обеспечивает их корректный фолдинг, необходимый для дальнейшей секреции и функциональной активности. Однако аппарат фолдинга не всегда справляется с нагрузкой, вызванной сверхэкспрессией рекомбинантных генов, что приводит к накоплению неправильно свернутых белков, образованию агрегатов и низкой продуктивности дрожжевых штаммов. Таким образом, способность к фолдингу белков в эндоплазматическом ретикулуме по-прежнему остается одним из основных ограничений при синтезе рекомбинатных белков в дрожжевых клетках. Эти ограничения были в значительной степени преодолены благодаря многолетним эффективным исследованиям фундаментальных механизмов белкового фолдинга. Изучение фолдинга как у модельных организмов, так и у биопродуцентов позволило выявить молекулярные факторы и клеточные механизмы, определяющие формирование трехмерной функциональной структуры растущей пептидной цепи. Полученные знания легли в основу разработки новых эффективных методов конструирования высокопродуктивных штаммов дрожжей. В данном обзоре мы рассмотрели основные клеточные механизмы, связанные с фолдингом белков, такие как транспорт через эндоплазматический ретикулум, взаимодействие с шаперонами, окислительный фолдинг, гликозилирование и контроль качества белков. Мы обсудили эффективность применения этих знаний при разработке различных инженерных методов, направленных на преодоление узких мест в системе белкового фолдинга. В частности, подбор оптимальных сигнальных пептидов, коэкспрессия с шаперонами и фолдазами, модификация клеточных механизмов контроля качества белков, ингибирование протеолиза и некоторые другие приемы позволили повысить возможности использования дрожжей-продуцентов в качестве эффективной производительной платформы для экспрессии и секреции рекомбинантных белков.
Ключевые слова
Об авторах
Н. В. ДороговаРоссия
Новосибирск
С. А. Федорова
Россия
Новосибирск
Список литературы
1. Aza P., Molpeceres G., de Salas F., Camarero S. Design of an improved universal signal peptide based on the α-factor mating secretion signal for enzyme production in yeast. Cell Mol Life Sci. 2021;78(7): 3691-3707. doi 10.1007/s00018-021-03793-y
2. Bankefa O.E., Wang M., Zhu T., Li Y. Hac1p homologues from higher eukaryotes can improve the secretion of heterologous proteins in the yeast Pichia pastoris. Biotechnol Lett. 2018;40(7):11491156. doi 10.1007/s10529-018-2571-y
3. Bao C., Li J., Chen H., Sun Y., Wang G., Chen G., Zhang S. Expression and function of an Hac1-regulated multi-copy xylanase gene in Saccharomyces cerevisiae. Sci Rep. 2020;10(1):11686. doi 10.1038/s41598-020-68570-6
4. Barrero J.J., Casler J.C., Valero F., Ferrer P., Glick B.S. An improved secretion signal enhances the secretion of model proteins from
5. Pichia pastoris. Microb Cell Fact. 2018;17(1):161. doi 10.1186/s12934-018-1009-5
6. Beal D.M., Bastow E.L., Staniforth G.L., von der Haar T., Freedman R.B., Tuite M.F. Quantitative analyses of the yeast oxidative protein folding pathway in vitro and in vivo. Antioxid Redox Signal. 2019;31(4):261-274. doi 10.1089/ars.2018.7615
7. Ben Azoun S., Belhaj A.E., Göngrich R., Gasser B., Kallel H. Molecular optimization of rabies virus glycoprotein expression in Pichia pastoris. Microb Biotechnol. 2016;9(3):355-368. doi 10.1111/1751-7915.12350
8. Berner N., Reutter K.R., Wolf D.H. Protein quality control of the endoplasmic reticulum and ubiquitin-proteasome-triggered degradation of aberrant proteins: yeast pioneers the path. Annu Rev Biochem. 2018;20(87):751-782. doi 10.1146/annurev-biochem-062917-012749
9. Braakman I., Hebert D.N. Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2013;5(5):a013201. doi 10.1101/cshperspect.a013201
10. Burgess R.R. Refolding solubilized inclusion body proteins. Methods Enzymol. 2009;463:259-282. doi 10.1016/S0076-6879(09)63017-2
11. Caramelo J.J., Parodi A.J. A sweet code for glycoprotein folding. FEBS Lett. 2015;589(22):3379-3387. doi 10.1016/j.febslet.2015.07.021
12. Damasceno L.M., Anderson K.A., Ritter G., Cregg J.M., Old L.J., Batt C.A. Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Appl Microbiol Biotechnol. 2007;74(2):381-389. doi 10.1007/s00253-006-0652-7
13. De Brabander P., Uitterhaegen E., Delmulle T., De Winter K., Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: a review. Biotechnol Adv. 2023;64: 108121. doi 10.1016/j.biotechadv.2023.108121
14. de Keyzer J., Steel G.J., Hale S.J., Humphries D., Stirling C.J. Nucleotide binding by Lhs1p is essential for its nucleotide exchange activity and for function in vivo. J Biol Chem. 2009;284(46):31564-31571. doi 10.1074/jbc.M109.055160
15. de Ruijter J.C., Frey A.D. Analysis of antibody production in Saccharomyces cerevisiae: effects of ER protein quality control disruption. Appl Microbiol Biotechnol. 2015;99:9061-9071. doi 10.1007/s00253-015-6807-7
16. de Ruijter J.C., Koskela E.V., Frey A.D. Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum. Microb Cell Fact. 2016;23(15):87. doi 10.1186/s12934-016-0488-5
17. Duan G., Ding L., Wei D., Zhou H., Chu J., Zhang S., Qian J. Screening endogenous signal peptides and protein folding factors to promote the secretory expression of heterologous proteins in Pichia pastoris. J Biotechnol. 2019;306:193-202. doi 10.1016/j.jbiotec.2019.06.297
18. Eskandari A., Nezhad N.G., Leow T.C., Rahman M.B.A., Oslan S.N. Current achievements, strategies, obstacles, and overcoming the challenges of the protein engineering in Pichia pastoris expression system. World J Microbiol Biotechnol. 2023;40(1):39. doi 10.1007/s11274-023-03851-6
19. Fauzee Y.N.B.M., Taniguchi N., Ishiwata-Kimata Y., Takagi H., Kimata Y. The unfolded protein response in Pichia pastoris without external stressing stimuli. FEMS Yeast Res. 2020;20(7):foaa053. doi 10.1093/femsyr/foaa053
20. Frand A.R., Kaiser C.A. The Ero1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell. 1998;1(2):161-170. doi 10.1016/s1097-2765(00)80017-9
21. Friedlander R., Jarosch E., Urban J., Volkwein C., Sommer T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol. 2000;2(7):379-384. doi 10.1038/35017001
22. Gasser B., Maurer M., Gach J., Kunert R., Mattanovich D. Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnol Bioeng. 2006;94(2):353-361. doi 10.1002/bit.20851
23. Gasser B., Saloheimo M., Rinas U., Dragosits M., Rodríguez-Carmona E., Baumann K., Giuliani M., … Porro D., Ferrer P., Tutino M.L., Mattanovich D., Villaverde A. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact. 2008;4(7):11. doi 10.1186/1475-2859-7-11
24. Gross E., Sevier C.S., Heldman N., Vitu E., Bentzur M., Kaiser C.A., Thorpe C., Fass D. Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc Natl Acad Sci USA. 2006;103(2):299-304. doi 10.1073/pnas.0506448103
25. Guerfal M., Ryckaert S., Jacobs P.P., Ameloot P., Van Craenenbroeck K., Derycke R., Callewaert N. The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb Cell Fact. 2010;9:49-60. doi 10.1186/1475-2859-9-49
26. Han M., Wang W., Gong X., Zhou J., Xu C., Li Y. Increased expression of recombinant chitosanase by co-expression of Hac1p in the yeast Pichia pastoris. Protein Pept Lett. 2021;28(12):1434-1441. doi 10.2174/0929866528666211105111155
27. Hartl F.U., Bracher A., Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324-332. doi 10.1038/nature10317
28. Hatahet F., Ruddock L.W. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal. 2009;11(11):2807-2850. doi 10.1089/ars.2009.2466
29. Hendershot L.M., Buck T.M., Brodsky J.L. The essential functions of molecular chaperones and folding enzymes in maintaining endoplasmic reticulum homeostasis. J Mol Biol. 2024;436(14):168418. doi 10.1016/j.jmb.2023.168418
30. Hernández-Elvira M., Torres-Quiroz F., Escamilla-Ayala A., Domínguez-Martin E., Escalante R., Kawasaki L., Ongay-Larios L., Coria R. The unfolded protein response pathway in the yeast Kluyve romyces lactis. A comparative view among yeast species. Cells. 2018;7(8):106. doi 10.3390/cells7080106
31. Herscovics A. Processing glycosidases of Saccharomyces cerevisiae. Biochim Biophys Acta. 1999;1426(2):275-285. doi 10.1016/s03044165(98)00129-9
32. Huang J., Zhao Q., Chen L., Zhang C., Bu W., Zhang X., Zhang K., Yang Z. Improved production of recombinant Rhizomucor miehei lipase by coexpressing protein folding chaperones in Pichia pastoris, which triggered ER stress. Bioengineered. 2020;11(1):375-385. doi 10.1080/21655979.2020.1738127
33. Huang M., Gao Y., Zhou X., Zhang Y., Cai M. Regulating unfolded protein response activator HAC1p for production of thermostable raw-starch hydrolyzing α-amylase in Pichia pastoris. Bioprocess Biosyst Eng. 2017;40(3):341-350. doi 10.1007/s00449-016-1701-y
34. Inan M., Fanders S.A., Zhang W., Hotez P.J., Zhan B., Meagher M.M. Saturation of the secretory pathway by overexpression of a hookworm (Necator americanus) protein (Na-ASP1). In: Cregg J.M. (Ed.) Pichia Protocols. Methods in Molecular Biology. Vol. 389. Humana Press, 2007;65-76. doi 10.1007/978-1-59745-456-8_5
35. Ishiwata-Kimata Y., Kimata Y. Fundamental and applicative aspects of the unfolded protein response in yeasts. J Fungi (Basel). 2023; 9(10):989. doi 10.3390/jof9100989
36. Ito Y., Ishigami M., Hashiba N., Nakamura Y., Terai G., Hasunuma T., Ishii J., Kondo A. Avoiding entry into intracellular protein degradation pathways by signal mutations increases protein secretion in Pichia pastoris. Microb Biotechnol. 2022;15(9):2364-2378. doi 10.1111/1751-7915.14061
37. Kelleher D.J., Gilmore R. An evolving view of the eukaryotic oligosac charyltransferase. Glycobiology. 2006;16(4):47R-62R. doi 10.1093/glycob/cwj066
38. Khlebodarova T.M., Bogacheva N.V., Zadorozhny A.V., Bryanskaya A.V., Vasilieva A.R., Chesnokov D.O., Pavlova E.I., Peltek S.E. Komagataella phaffii as a platform for heterologous expression of enzymes used for industry. Microorganisms. 2024;12(2): 346. doi 10.3390/microorganisms12020346
39. Kim M.D., Han K.C., Kang H.A., Rhee S.K., Seo J.H. Coexpression of BiP increased antithrombotic hirudin production in recombinant Saccharomyces cerevisiae. J Biotechnol. 2003;101(1):81-87. doi 10.1016/s0168-1656(02)00288-2
40. Kimmig P., Diaz M., Zheng J., Williams C.C., Lang A., Aragón T., Li H., Walter P. The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis. eLife. 2012;1:e00048. doi 10.7554/eLife.00048
41. Korennykh A., Walter P. Structural basis of the unfolded protein response. Annu Rev Cell Dev Biol. 2012;28:251-277. doi 10.1146/annurev-cellbio-101011-155826
42. Krshnan L., van de Weijer M.L., Carvalho P. Endoplasmic reticulumassociated protein degradation. Cold Spring Harb Perspect Biol. 2022;14(12):a041247. doi 10.1101/cshperspect.a041247
43. Lee T.H., Bae Y.H., Kim M.D., Seo J.H. Overexpression of Hac1 gene increased levels of both intracellular and secreted human kringle fragment in Saccharomyces cerevisiae. Process Biochem. 2012; 47(12):2300-2305. doi 10.1016/j.procbio.2012.09.006
44. Lehle L., Strahl S., Tanner W. Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew Chem Int Ed Engl. 2006;45(41):6802-6818. doi 10.1002/anie.200601645
45. Li C., Lin Y., Zheng X., Pang N., Liao X., Liu X., Huang Y., Liang S. Combined strategies for improving expression of Citrobacter amalo naticus phytase in Pichia pastoris. BMC Biotechnol. 2015;15:88. doi 10.1186/s12896-015-0204-2
46. Li F., Chen Y., Qi Q., Wang Y., Yuan L., Huang M., Elsemman I.E., Feizi A., Kerkhoven E.J., Nielsen J. Improving recombinant protein production by yeast through genome-scale modeling using proteome
47. constraints. Nat Commun. 2022;13(1):2969. doi 10.1038/s41467022-30689-7
48. Lin Y., Feng Y., Zheng L., Zhao M., Huang M. Improved protein production in yeast using cell engineering with genes related to a key factor in the unfolded protein response. Metab Eng. 2023;77:152161. doi 10.1016/j.ymben.2023.04.004
49. Madhavan A., Arun K.B., Sindhu R., Krishnamoorthy J., Reshmy R., Sirohi R., Pugazhendi A., Awasthi M.K., Szakacs G., Binod P. Customized yeast cell factories for biopharmaceuticals: from cell engi
50. neering to process scale up. Microb Cell Fact. 2021;20(1):124. doi 10.1186/s12934-021-01617-z
51. Mizunaga T., Katakura Y., Miura T., Maruyama Y. Purification and characterization of yeast protein disulfide isomerase. J Biochem. 1990;108(5):846-851. doi 10.1093/oxfordjournals.jbchem.a123291
52. Mori A., Hara S., Sugahara T., Kojima T., Iwasaki Y., Kawarasaki Y., Sahara T., Ohgiya S., Nakano H. Signal peptide optimization tool for the secretion of recombinant protein from Saccharomyces cere
53. visiae. J Biosci Bioeng. 2015;120(5):518-525. doi 10.1016/j.jbiosc.2015.03.003
54. Mori K. Evolutionary aspects of the unfolded protein response. Cold Spring Harb Perspect Biol. 2022;14(12):a041262. doi 10.1101/cshperspect.a041262
55. Niu Y., Zhang L., Yu J., Wang C.C., Wang L. Novel roles of the noncatalytic elements of yeast protein-disulfide isomerase in its interplay with endoplasmic reticulum oxidoreductin 1. J Biol Chem.
56. ;291(15):8283-8294. doi 10.1074/jbc.M115.694257
57. Núñez A., Dulude D., Jbel M., Rokeach L.A. Calnexin is essential for survival under nitrogen starvation and stationary phase in Schizosaccharomyces pombe. PLoS One. 2015;10(3):e0121059. doi 10.1371/
58. journal.pone.0121059
59. O’Keefe S., Pool M.R., High S. Membrane protein biogenesis at the ER: the highways and byways. FEBS J. 2022;289(22):6835-6862. doi 10.1111/febs.15905
60. Omkar S., Mitchem M.M., Hoskins J.R., Shrader C., Kline J.T., Nitika, Fornelli L., Wickner S., Truman A.W. Acetylation of the yeast Hsp40 chaperone protein Ydj1 fine-tunes proteostasis and translational fidelity. PLoS Genet. 2024;20(12):e1011338. doi 10.1371/journal.pgen.1011338
61. Palma A., Rettenbacher L.A., Moilanen A., Saaranen M., PachecoMartinez C., Gasser B., Ruddock L. Biochemical analysis of Komagataella phaffii oxidative folding proposes novel regulatory me chanisms of disulfide bond formation in yeast. Sci Rep. 2023;13(1): 14298. doi 10.1038/s41598-023-41375-z
62. Parlati F., Dominguez M., Bergeron J.J., Thomas D.Y. Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J Biol Chem. 1995;270(1):244-253. doi 10.1074/jbc.270.1.244
63. Parodi A.J. Protein glucosylation and its role in protein folding. Annu Rev Biochem. 2000;69:69-93. doi 10.1146/annurev.biochem.69.1.69
64. Payne T., Finnis C., Evans L.R., Mead D.J., Avery S.V., Archer D.B., Sleep D. Modulation of chaperone gene expression in mutagenized Saccharomyces cerevisiae strains developed for recombinant hu
65. man albumin production results in increased production of multiple heterologous proteins. Appl Environ Microbiol. 2008;74(24):77597766. doi 10.1128/AEM.01178-08
66. Pfeffer M., Maurer M., Stadlmann J., Grass J., Delic M., Altmann F., Mattanovich D. Intracellular interactome of secreted antibody Fab fragment in Pichia pastoris reveals its routes of secretion and degradation. Appl Microbiol Biotechnol. 2012;93(6):2503-2512. doi 10.1007/s00253-012-3933-3
67. Pickart C.M. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70:503-533. doi 10.1146/annurev.biochem.70.1.503
68. Preston G.M., Brodsky J.L. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J. 2017;474(4):445-469. doi 10.1042/BCJ20160582
69. Qi Q., Li F., Yu R., Engqvist M.K.M., Siewers V., Fuchs J., Nielsen J. Different routes of protein folding contribute to improved protein production in Saccharomyces cerevisiae. mBio. 2020;11(6): e02743-20. doi 10.1128/mBio.02743-20
70. Raschmanová H., Weninger A., Knejzlík Z., Melzoch K., Kovar K. Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteins. Appl Microbiol Biotechnol. 2021;105(11):4397-4414. doi 10.1007/s00253-021-11336-5
71. Robinson A.S., Hines V., Wittrup K.D. Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Nat Biotechnol. 1994;12(4):381-384. doi 10.1038/nbt0494-381
72. Ruger-Herreros C., Svoboda L., Mogk A., Bukau B. Role of J-domain proteins in yeast physiology and protein quality control. J Mol Biol. 2024;436(14):168484. doi 10.1016/j.jmb.2024.168484
73. Ruggiano A., Foresti O., Carvalho P. Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol. 2014; 204(6):869-879. doi 10.1083/jcb.201312042
74. Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 2013;14(10):630-642. doi 10.1038/nrm3658
75. Sallada N.D., Harkins L.E., Berger B.W. Effect of gene copy number and chaperone coexpression on recombinant hydrophobin HFBI biosurfactant production in Pichia pastoris. Biotechnol Bioeng. 2019;116(8):2029-2040. doi 10.1002/bit.26982
76. Schlenstedt G., Harris S., Risse B., Lill R., Silver P.A. A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/Kar2p via a conserved domain that specifies interactions with Hsp70s. J Cell Biol. 1995;129(4):979-988. doi 10.1083/jcb.129.4.979
77. Schroder M., Clark R., Kaufman R.J. IRE1 and HAC1-independent transcriptional regulation in the unfolded protein response of yeast. Mol Microbiol. 2003;49(3):591-606. doi 10.1046/j.1365-2958.2003.03585.x
78. Schuck S., Prinz W.A., Thorn K.S., Voss C., Walter P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol. 2009;187(4):525-536. doi 10.1083/jcb.200907074
79. Schwarz D.S., Blower M.D. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. 2016; 73(1):79-94. doi 10.1007/s00018-015-2052-6
80. Sevier C.S., Kaiser C.A. Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1. Mol Biol Cell. 2006;17(5):2256-2266. doi 10.1091/mbc.e05-05-0417
81. Sheng J., Flick H., Feng X. Systematic optimization of protein secretory pathways in Saccharomyces cerevisiae to increase expression of hepatitis B small antigen. Front Microbiol. 2017;8:875. doi 10.3389/fmicb.2017.00875
82. Shusta E.V., Raines R.T., Plückthun A., Wittrup K.D. Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol. 1998;16(8):773
83. doi 10.1038/nbt0898-773
84. Singhvi P., Saneja A., Ahuja R., Panda A.K. Solubilization and refolding of variety of inclusion body proteins using a novel formulation. Int J Biol Macromol. 2021;193(Pt.B):2352-2364. doi 10.1016/j.ijbiomac.2021.11.068
85. Smith J.D., Tang B.C., Robinson A.S. Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a nondisulfide-bonded protein in yeast. Biotechnol Bioeng. 2004;85(3): 340-350. doi 10.1002/bit.10853
86. Steel G.J., Fullerton D.M., Tyson J.R., Stirling C.J. Coordinated activation of Hsp70 chaperones. Science. 2004;303(5654):98-101. doi 10.1126/science.1092287
87. Thak E.J., Yoo S.J., Moon H.Y., Kang H.A. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins. FEMS Yeast Res. 2020;20(2):foaa009. doi 10.1093/femsyr/foaa009
88. Thibault G., Ng D.T.W. The endoplasmic reticulum-associated degradation pathways of budding yeast. Cold Spring Harb Perspect Biol. 2012;4(12):a013193. doi 10.1101/cshperspect.a013193
89. Travers K.J., Patil C.K., Wodicka L., Lockhart D.J., Weissman J.S., Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. 2000;101(3):249-258. doi 10.1016/s00928674(00)80835-1
90. Tsuda M., Nonaka K. Recent progress on heterologous protein production in methylotrophic yeast systems. World J Microbiol Biotechnol. 2024;40(7):200. doi 10.1007/s11274-024-04008-9
91. Valkonen M., Penttila M., Saloheimo M. Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 2003;69(4):2065-2072. doi 10.1128/aem.69.4.2065-2072.2003
92. Wang L., Wang C.C. Oxidative protein folding fidelity and redoxtasis in the endoplasmic reticulum. Trends Biochem Sci. 2023;48(1):40-52. doi 10.1016/j.tibs.2022.06.011
93. Ware F.E., Vassilakos A., Peterson P.A., Jackson M.R., Lehrman M.A., Williams D.B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing
94. unfolded glycoproteins. J Biol Chem. 1995;270(9):4697-4704. doi 10.1074/jbc.270.9.4697
95. Xia X. Translation control of HAC1 by regulation of splicing in Saccharomyces cerevisiae. Int J Mol Sci. 2019;20(12):2860. doi 10.3390/ijms20122860
96. Xu C., Ng D.T.W. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol. 2015;16:742-752. doi 10.1038/nrm4073
97. Xu X., Kanbara K., Azakam H., Kato A. Expression and characterization of Saccharomyces cerevisiae Cne1p, a calnexin homologue. J Biochem. 2004;135(5):615-618. doi 10.1093/jb/mvh074
98. Yamaguchi H., Miyazaki M. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules. 2014;4(1):235-251. doi 10.3390/biom4010235
99. Yang J., Lu Z., Chen J., Chu P., Cheng Q., Liu J., Ming F., Huang C., Xiao A., Cai H., Zhang L. Effect of cooperation of chaperones and gene dosage on the expression of porcine PGLYRP-1 in Pichia pastoris. Appl Microbiol Biotechnol. 2016;100(12):5453-5465. doi 10.1007/s00253-016-7372-4
100. Zahrl R.J., Gasser B., Mattanovich D., Ferrer P. Detection and elimination of cellular bottlenecks in protein-producing yeasts. In: Gasser B., Mattanovich D. (Eds) Recombinant Protein Production in
101. Yeast. Methods in Molecular Biology. Vol. 1923. Humana Press, 2019;75-95. doi 10.1007/978-1-4939-9024-5_2
102. Zahrl R.J., Prielhofer R., Ata Ö., Baumann K., Mattanovich D., Gasser B. Pushing and pulling proteins into the yeast secretory pathway enhances recombinant protein secretion. Metab Eng. 2022;74: 36-48. doi 10.1016/j.ymben.2022.08.010
103. Zahrl R.J., Prielhofer R., Burgard J., Mattanovich D., Gasser B. Synthetic activation of yeast stress response improves secretion of recombinant proteins. N Biotechnol. 2023;73:19-28. doi 10.1016/j.nbt. 2023.01.001
104. Zha J., Liu D., Ren J., Liu Z., Wu X. Advances in metabolic engineering of Pichia pastoris strains as powerful cell factories. J Fungi ( Basel). 2023;9(10):1027. doi 10.3390/jof9101027






