Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Целлюлаза: основные свойства, природные источники и применение в промышленности

https://doi.org/10.18699/vjgb-25-141

Аннотация

В последние годы целлюлаза привлекает огромное внимание как промышленно важный фермент с широким спектром применения. Целлюлазы представляют собой сложную группу ферментов, которые секретируются многообразием микроорганизмов, включая грибы и бактерии. Они относятся к подклассу ферментов гидролаз, субстратом которых является полисахарид целлюлоза. Целлюлазы имеют огромное практическое значение, поскольку содержащие целлюлозу материалы используются во множестве отраслей народного хозяйства. В этом обзоре приведены сведения об основных свойствах и структуре целлюлаз. Но основное внимание уделено применению этих ферментов в промышленности, а прочие аспекты, так или иначе, рассматриваются с учетом этого. Исследованы имеющие наибольшее практическое значение бактериальные и грибные целлюлазы, их основные преимущества и отличия. Отдельно рассмотрены экстремофильные (а именно термо-, психро- и галофильные) целлюлазы как обладающие свойствами, нужными в условиях современных технологических процессов. Поскольку для практического применения необходимы массовая продукция и оптимальное сочетание свойств ферментов, внимание также уделено получению эффективных продуцентов и модификации свойств, производимых целлюлаз. Наконец, обозначены ключевые тенденции в подходах к производству целлюлаз и перспективы практического применения.

Об авторах

А. В. Задорожный
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Н. М. Слынько
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



С. В. Банникова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Н. В. Богачева
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



В. Н. Шляхтун
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



А. Р. Васильева
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Е. Ю. Букатич
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



В. С. Ушаков
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Ю. Е. Уварова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



А. В. Коржук
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



А. А. Шипова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Д. В. Бочков
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Е. Ю. Павлова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Д. О. Чесноков
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



С. Е. Пельтек
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Список литературы

1. Acharya S., Chaudhary A. Bioprospecting thermophiles for cellulase production: a review. Braz J Microbiol. 2012;43(3):844-856. doi 10.1590/S1517-83822012000300001

2. Akbarzadeh A., Pourzardosht N., Dehnavi E., Ranaei Siadat S.O., Zamani M.R., Motallebi M., Nikzad Jamnani F., Aghaeepoor M., Barshan Tashnizi M. Disulfide bonds elimination of endoglucanase II

3. from Trichoderma reesei by site-directed mutagenesis to improve enzyme activity and thermal stability: an experimental and theoretical approach. Int J Biol Macromol. 2018;120(Pt. B):1572-1580. doi 10.1016/j.ijbiomac.2018.09.164

4. Akila G., Chandra T.S. A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase. FEMS Microbiol Lett. 2003;

5. (1):63-67. doi 10.1016/S0378-1097(02)01196-5

6. Akram F., Haq I.U. Overexpression and characterization of TnCel12B, a hyperthermophilic GH12 endo-1,4-β-glucanase cloned from Thermotoga naphthophila RKU-10T. Anal Biochem. 2020;599:113741.

7. doi 10.1016/j.ab.2020.113741

8. Alvarez T.M., Paiva J.H., Ruiz D.M., Cairo J.P., Pereira I.O., Paixão D.A., de Almeida R.F., Tonoli C.C., Ruller R., Santos C.R., Squina F.M., Murakami M.T. Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One. 2013;8(12):e83635. doi 10.1371/journal.pone.0083635

9. Arya M., Chauhan G., Fatima T., Verma D., Sharma M. Statistical modelling of thermostable cellulase production conditions of thermophilic Geobacillus sp. TP-1 isolated from Tapovan hot springs of the Garhwal Himalayan mountain ranges, India. Indian J Microbiol. 2024;64(3):1132-1143. doi 10.1007/s12088-024-01258-x

10. Azadian F., Badoei-Dalfard A., Namaki-Shoushtari A., Hassanshahian M. Purification and biochemical properties of a thermostable, haloalkaline cellulase from Bacillus licheniformis AMF-07 and its application for hydrolysis of different cellulosic substrates to bioethanol production. Mol Biol Res Commun. 2016;5(3):143-155. doi 10.22099/mbrc.2016.3743

11. Azman N.A., Fuzi S.F.Z.M., Talip B.A., Abdullah S. Enzymatic clarification of soursop juice by pectinase/cellulase enzymes ratio. Enhanced Knowledge Sci Technol. 2021;1(2):234-243. doi 10.30880/ekst.2021.01.02.028

12. Azzaz H.H., Abd A.M., Tawab E., Khattab M.S.A., Szumacher-Strabel M., Cieślak A.C., Murad H.A., Kiełbowicz M., El-Sherbiny M. Effect of cellulase enzyme produced from Penicilliumchrysogenum

13. on the milk production, composition, amino acid, and fatty acid profiles of egyptian buffaloes fed a high-forage diet. Animals. 2021;11(11):3066. doi 10.3390/ANI11113066

14. Bakermans C., Skidmore M.L. Microbial metabolism in ice and brine at –5 °C. Environ Microbiol. 2011;13(8):2269-2278. doi 10.1111/j.1462-2920.2011.02485.x

15. Barzkar N., Homaei A., Hemmati R., Patel S. Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles. 2018;22(3):335-346. doi 10.1007/s00792-018-1009-8

16. Batista-García R.A., Sutton T., Jackson S.A., Tovar-Herrera O.E., Balcázar-López E., Sánchez-Carbente M.D., Sánchez-Reyes A., Dobson A.D., Folch-Mallol J.L. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One. 2017;12(3):e0173750. doi 10.1371/journal.pone.0173750

17. Benešová E., Marková M., Králová B. α-Glucosidase and β-glucosidase from psychrotrophic strainarthrobacter sp. C2-2. Czech J Food Sci. 2005;23(3):116-120. doi 10.17221/3380-CJFS

18. Bhat M.K., Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv. 1997;15(3-4):583-620. doi 10.1016/s0734-9750(97)00006-2

19. Bhati N., Shreya, Sharma A.K. Cost-effective cellulase production, improvement strategies, and future challenges. J Food Process Eng. 2021;44(2):e13623. doi 10.1111/jfpe.13623

20. Bhattacharya A.S., Bhattacharya A., Pletschke B.I. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett. 2015;37(6): 1117-1129. doi 10.1007/s10529-015-1779-3

21. Bing W., Wang H., Zheng B., Zhang F., Zhu G., Feng Y., Zhang Z. Caldicellulosiruptor changbaiensis sp. nov., a cellulolytic and hydrogen-producing bacterium from a hot spring. Int J Syst Evol Microbiol.2015;65(Pt. 1):293-297. doi 10.1099/ijs.0.065441-0

22. Boyce A., Walsh G. Expression and characterisation of a thermophilic endo-1,4-β-glucanase from Sulfolobus shibatae of potential industrial application. Mol Biol Rep. 2018;45(6):2201-2211. doi 10.1007/s11033-018-4381-7

23. Bremer G.B., Talbot G. Cellulolytic enzyme activity in the marine protist Schizochytrium aggregatum. Bot Mar. 1995;38(1-6):37-42. doi 10.1515/botm.1995.38.1-6.37

24. Cao L., Yu M., Wang C., Bao Y., Zhang M., He P., Zhang Y., Yang T., Li L., Li G., Gong Y. Cellulase-assisted extraction, characterization, and bioactivity against rheumatoid arthritis of Astragalus polysaccharides. Int J Polym Sci. 2019;2:8514247. doi 10.1155/2019/8514247

25. Chellapandi P., Jani H.M. Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation. Braz J Microbiol. 2008;39(1):122-127. doi 10.1590/S1517-83822008000 1000026

26. Cherry J.R., Fidantsef A.L. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol. 2003;14(4):438-443. doi 10.1016/s0958-1669(03)00099-5

27. Chiwetalu M.O., Ossai E.C., Enechi O.C., Ugwu C.N., Ozogwu V.E., Okpala C.O.R., Njoku O.U. An enhanced fat extraction from Pycnanthus angolensis (African nutmeg) seeds using cellulase from Aspergillus niger strain BC23. Qual Assur Saf Crops Foods. 2022; 14(3):165-175. doi 10.15586/qas.v14i3.997

28. Chun C.Z., Hur S.B., Kim Y.T. Purification and characterization of an endoglucanase from the marine rotifer, Brachionus plicatilis. Biochem Mol Biol Int. 1997;43(2):241-249. doi 10.1080/15216549700204021

29. Chung D., Cha M., Guss A.M., Westpheling J. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci USA. 2014;111(24):8931-8936. doi 10.1073/pnas.1402210111

30. Chutani P., Sharma K.K. Concomitant production of xylanases and cellulases from Trichoderma longibrachiatum MDU-6 selected for the deinking of paper waste. Bioprocess Biosyst Eng. 2016;39(5):747-758. doi 10.1007/s00449-016-1555-3

31. Ciaramella M., Pisani F.M., Rossi M. Molecular biology of extremophiles: recent progress on the hyperthermophilic archaeon Sulfolobus. Antonie Van Leeuwenhoek. 2002;81(1-4):85-97. doi 10.1023/a:1020577510469

32. Cole J.K., Gieler B.A., Heisler D.L., Palisoc M.M., Williams A.J., Dohnalkova A.C., Ming H., Yu T.T., Dodsworth J.A., Li W.-J., Hedlund B.P. Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia. Int J Syst Evol Microbiol. 2013;63(12):4675-4682. doi 10.1099/ijs.0.053348-0

33. Coutts A.D., Smith R.E. Factors influencing the production of cellulases by Sporotrichum thermophile. Appl Environ Microbiol. 1976; 31(6):819-825. doi 10.1128/aem.31.6.819-825.1976

34. Cristóbal H.A., Breccia J.D., Abate C.M. Isolation and molecular characterization of Shewanella sp. G5, a producer of cold-active betaD-glucosidases. J Basic Microbiol. 2008;48(1):16-24. doi 10.1002/jobm.200700146

35. Dalmaso G.Z., Ferreira D., Vermelho A.B. Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs. 2015;13(4):1925-1965. doi 10.3390/md13041925

36. Dashtban M., Buchkowski R., Qin W. Effect of different carbon sources on cellulase production by Hypocrea jecorina (Trichoderma reesei) strains. Int J Biochem Mol Biol. 2011;2(3):274-286

37. Dave B.R., Sudhir A.P., Pansuriya M., Raykundaliya D.P., Subramanian R.B. Utilization of Jatropha deoiled seed cake for production of cellulases under solid-state fermentation. Bioprocess Biosyst Eng.

38. ;35(8):1343-1353. doi 10.1007/s00449-012-0723-3

39. Demain A.L., Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009;27(3):297-306. doi 10.1016/j.biotechadv.2009.01.008

40. Doi R.H., Tamaru Y. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem Rec. 2001;1(1):24-32. doi 10.1002/1528-0691(2001)1:1<24::AIDTCR5>3.0.CO;2-W

41. Dotsenko A.S., Dotsenko G.S., Rozhkova A.M., Zorov I.N., Sinitsyn A.P. Rational design and structure insights for thermostabili ty improvement of Penicillium verruculosum Cel7A cellobiohydrolase. Biochimie. 2020;176:103-109. doi 10.1016/j.biochi.2020.06.007

42. Ejaz U., Sohail M., Ghanemi A. Cellulases: from bioactivity to a variety of industrial applications. Biomimetics. 2021;6(3):44. doi 10.3390/biomimetics6030044

43. El-Baroty G., Abou Elella F., Moawad H., El Sebai T., Abdulaziz F., Khattab A.A. Optimization and characterization of extracellular cellulase produced by native Egyptian fungal strain. Notulae Botanicae. 2019;47(3):743-750. doi 10.15835/nbha47311500

44. Folan M.A., Coughlan M.P. The cellulase complex in the culture filtrate of the thermophyllic fungus, Talaromyces emersonii. Int J Biochem. 1978;9(10):717-722. doi 10.1016/0020-711x(78)90038-1

45. Fracheboud D., Canevascini G. Isolation, purification, and properties of the exocellulase from Sporotrichum (Chrysosporium) thermophile. Enzyme Microb Technol. 1989;11(4):220-229. doi 10.1016/01410229(89)90096-3

46. Fu X., Liu P., Lin L., Hong Y., Huang X., Meng X., Liu Z. A novel endoglucanase (Cel9P) from a marine bacterium Paenibacillus sp. BME-14. Appl Biochem Biotechnol. 2010;160(6):1627-1636. doi 10.1007/s12010-009-8648-2

47. Fujii K., Satomi M., Fukui Y., Matsunobu S., Morifuku Y., Enokida Y. Streptomyces abietis sp. nov., a cellulolytic bacterium isolated from soil of a pine forest. Int J Syst Evol Microbiol. 2013;63(Pt. 12): 4754-4759. doi 10.1099/ijs.0.053025-0

48. Fusco F.A., Ronca R., Fiorentino G., Pedone E., Contursi P., Bartolucci S., Limauro D. Biochemical characterization of a thermostable endomannanase/endoglucanase from Dictyoglomus turgidum. Extremophiles. 2018;22(1):131-140. doi 10.1007/s00792-017-0983-6

49. Garvey M., Klose H., Fischer R., Lambertz C., Commandeur U. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol. 2013;31(10):581-593. doi 10.1016/j.tibtech.2013.06.006

50. Ghosh S., Lepcha K., Basak A., Mahanty A.K. Thermophiles and thermophilic hydrolases. In: Salwan R., Sharma V. (Eds) Physiological and Biotechnological Aspects of Extremophiles. Academic Press, 2020;219-236. doi 10.1016/B978-0-12-818322-9.00016-2

51. Harshvardhan K., Mishra A., Jha B. Purification and characterization of cellulase from a marine Bacillus sp. H1666: a potential agent for single step saccharification of seaweed biomass. J Mol Catal B Enzym. 2013;93:51-56. doi 10.1016/j.molcatb.2013.04.009

52. Hasunuma T., Okazaki F., Okai N., Hara K.Y., Ishii J., Kondo A. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol. 2013;135:513-522. doi 10.1016/j.biortech.2012.10.047

53. Hatamoto M., Kaneshige M., Nakamura A., Yamaguchi T. Bacteroides luti sp. nov., an anaerobic, cellulolytic and xylanolytic bacterium isolated from methanogenic sludge. Int J Syst Evol Microbiol. 2014;64(Pt. 5):1770-1774. doi 10.1099/ijs.0.056630-0

54. Hayashi K., Nimura Y., Ohara N., Uchimura T., Suzuki H., Komacata K., Kozaki M. Lowtemperatureactive cellulase produced by Acremonium alcalophilum-JCM 7366. J Ferment Bioeng. 1996; 74(1):7-10

55. Horino H., Fujita T., Tonouchi A. Description of Anaerobacterium chartisolvens gen. nov., sp. nov., an obligately anaerobic bacterium from Clostridium rRNA cluster III isolated from soil of a Japanese ricefield, and reclassification of Bacteroides cellulosolvens Murray et al. 1984 as Pseudobacteroides cellulosolvens gen. nov., comb. nov. Int J Syst Evol Microbiol. 2014;64(Pt. 4):1296-1303. doi 10.1099/ijs.0.059378-0

56. Hu X., Cheng L., Hong Y., Li Z., Li C., Gu Z. Impact of celluloses and pectins restrictions on gluten development and water distribution in potato-wheat flour dough. Int J Biol Macromol. 2022;206:534-542. doi 10.1016/j.ijbiomac.2022.02.150

57. Hu Y., Kang G., Wang L., Gao M., Wang P., Yang D., Huang H. Current status of mining, modification, and application of cellulases in bioactive substance extraction. Curr Issues Mol. 2021;43(2):687-703.

58. doi 10.3390/cimb43020050

59. Huang S., Sheng P., Zhang H. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int J Mol Sci. 2012;13(3):2563-2577. doi 10.3390/ijms13032563

60. Ilić N., Milić M., Beluhan S., Dimitrijević-Branković S. Cellulases: from lignocellulosic biomass to improved production. Energies. 2023;16(8):3598. doi 10.3390/en16083598

61. Imran M., Anwar Z., Zafar M., Ali A., Arif M. Production and characterization of commercial cellulase produced through Aspergillus niger IMMIS1 after screening fungal species. Pak J Bot. 2018;

62. (4):1563-1570

63. Iwamuro M., Kawai Y., Shiraha H., Takaki A., Okada H., Yamamo to K. In vitro analysis of gastric phytobezoar dissolubility by СocaСola, Сoca-Сola Zero, cellulase, and papain. J Clin Gastroenterol. 2014;48(2):190-191. doi 10.1097/MCG.0b013e3182a39116

64. Iyo A.H., Forsberg C.W. A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85. Appl Environ Microbiol. 1999;65(3):995-998. doi 10.1128/aem.65.3.995-998.1999

65. Jahromi S.T., Barzkar N. Future direction in marine bacterial agarases for industrial applications. Appl Microbiol Biotechnol. 2018; 102(16):6847-6863. doi 10.1007/s00253-018-9156-5

66. Juturu V., Wu J.C. Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev. 2014;33:188-203. doi 10.1016/j.rser.2014.01.077

67. Kahn A., Moraïs S., Chung D., Sarai N.S., Hengge N.N., Kahn A., Himmel M.E., Bayer E.A., Bomble Y.J. Glycosylation of hyperthermostable designer cellulosome components yields enhanced stability and cellulose hydrolysis. FEBS J. 2020;287(20):4370-4388. doi 10.1111/febs.15251

68. Karan R., Capes M.D., Dassarma S. Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst. 2012; 8(1):4. doi 10.1186/2046-9063-8-4

69. Karmakar M., Ray R.R. Current trends in research and application of microbial cellulases. Res J Microbiol. 2011;6(1):41-53. doi 10.3923/jm.2011.41.53

70. Kasana R.C., Gulati A. Cellulases from psychrophilic microorganisms: a review. J Basic Microbiol. 2011;51(6):572-579. doi 10.1002/jobm. 201000385

71. Kirk O., Borchert T.V., Fuglsang C.C. Industrial enzyme applications. Curr Opin Biotechnol. 2002;13(4):345-351. doi 10.1016/s09581669(02)00328-2

72. Koeck D.E., Ludwig W., Wanner G., Zverlov V.V., Liebl W., Schwarz W.H. Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol. 2015;65(8):23652371. doi 10.1099/ijs.0.000264

73. Kusube M., Sugihara A., Moriwaki Y., Ueoka T., Shimane Y., Minegishi H. Alicyclobacillus cellulosilyticus sp. nov., a thermophilic, cellulolytic bacterium isolated from steamed Japanese cedar chips from a lumbermill. Int J Syst Evol Microbiol. 2014;64(7):2257-2263. doi 10.1099/ijs.0.061440-0

74. Ladenstein R., Ren B. Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles. FEBS J. 2006;273(18):4170-4185. doi 10.1111/j.1742-4658.2006.05421.x

75. Laksanalamai P., Robb F.T. Small heat shock proteins from extremophiles: a review. Extremophiles.2004;8(1):1-11. doi 10.1007/s00792-003-0362-3

76. Lambertz C., Garvey M., Klinger J., Heesel D., Klose H., Fischer R., Commandeur U. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels. 2014;7(1):135. doi 10.1016/j.rser.2014.01.077

77. Lehr M., Miltner M., Friedl A. Removal of wood extractives as pulp (pre-)treatment: a technological review. SN Appl Sci. 2021;3:886. doi 10.1007/s42452-021-04873-1

78. Liu D., Zhang R., Yang X., Xu Y., Tang Z., Tian W., Shen Q. Expression, purification and characterization of two thermostable endoglucanases cloned from a lignocellulosic decomposing fungi Aspergil

79. us fumigatus Z5 isolated from compost. Protein Expr Purif. 2011; 79(2):176-186. doi 10.1016/j.pep.2011.06.008

80. Liu J., Xue D., He K., Yao S. Cellulase production in solid-state fermentation by marine Aspergillus sp. ZJUBE-1 and its enzymological properties. Adv Sci Lett. 2012;16(1):381-386. doi 10.1166/asl.2012.3304

81. Luo J., Li Y., Li Y., Li H., Fang X., Li Y., Huang W., Cao J., Wu Y. Waste-to-energy: cellulase induced waste activated sludge and paper waste co-fermentation for efficient volatile fatty acids production and underlying mechanisms. Bioresour Technol. 2021;341:125771. doi 10.1016/j.biortech.2021.125771

82. Lynd L.R., van Zyl W.H., McBride J.E., Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol. 2005;16(5):577-583. doi 10.1016/j.copbio.2005.08.009

83. Maki M., Leung K.T., Qin W. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci. 2009;5(5):500-516. doi 10.7150/ijbs.5.500

84. Mathew G.M., Sukumaran R.K., Singhania R.R., Pandey A. Progress in research on fungal cellulases for lignocellulose degradation. J Sci Ind Res. 2008;67(11):898-907

85. Menendez E., Ramírez-Bahena M.H., Fabryová A., Igual J.M., Benada O., Mateos P.F., Peix A., Kolařík M., García-Fraile P. Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated

86. from the bark beetle Hylesinus fraxini. Int J Syst Evol Microbiol. 2015;65(9):2852-2858. doi 10.1099/ijs.0.000344

87. Milici M., Vital M., Tomasch J., Badewien T.H., Giebel H.-A., Plumeier I., Wang H., Pieper D.H., Wagner-Döbler I., Simon M. Diversity and community composition of particle-associated and free

88. living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: evidence of dispersal limitation in the Bransfield Strait. Limnol Oceanogr. 2017;62(3):1080-1095. doi 10.1002/lno.10487

89. Mohand-Oussaid O., Payot S., Guedon E., Gelhaye E., Youyou A., Petitdemange H. The extracellular xylan degradative system in Clostridium cellulolyticum cultivated on xylan: evidence for cell-free

90. cellulosome production. J Bacteriol. 1999;181(13):4035-4040. doi 10.1128/jb.181.13.4035-4040.1999

91. Mukherjee P.K., Horwitz B.A., Kenerley C.M. Secondary metabolism in Trichoderma – a genomic perspective. Microbiology. 2012; 158(Pt. 1):35-45. doi 10.1099/mic.0.053629-0

92. Munjal N., Jawed K., Wajid S., Yazdani S.S. A constitutive expression system for cellulase secretion in Escherichia coli and its use in bioethanol production. PLoS One. 2015;10(3):e0119917. doi 10.1371/journal.pone.0119917

93. Mykytczuk N.C.S., Foote S.J., Omelon C.R., Southam G., Greer C.W., Whyteet L.G. Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J.

94. ;7(6):1211-1226. doi 10.1038/ismej.2013.8

95. Nishida Y., Suzuki K., Kumagai Y., Tanaka H., Inoue A., Ojima T. Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus. Biochimie. 2007;89(8):1002-1011.

96. doi 10.1016/j.biochi.2007.03.015

97. Niyonzima F.N. Detergent-compatible fungal cellulases. Folia Microbiol. 2021;66(1):25-40. doi 10.1007/s12223-020-00838-w

98. Nyathi M., Dhlamini Z., Ncube T. Bioprospecting for cellulase producing bacteria from Victoria falls rainforest decaying logs. Am J Microbiol Res. 2023;11(3):73-78. doi 10.12691/ajmr-11-3-2

99. Oikawa T., Tsukagawa Y., Soda K. Endo-β-glucanase secreted by a psychrotrophic yeast: purification and characterization. Biosci Biotechnol Biochem. 1998;62(9):1751-1756. doi 10.1271/bbb.62.1751

100. Okino-Delgado C.H., Zanutto-Elgui M.R., do Prado D.Z., Pereira M.S., Fleuri L.F. Enzymatic bioremediation: current status, challenges of obtaining process, and applications. In: Arora P. (Ed.) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability. Vol. 10. Springer,2019;79-101. doi 10.1007/978-98113-7462-3_4

101. Olson D.G., McBride J.E., Shaw A.J., Lynd L.R. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol. 2012;23(3):396405. doi 10.1016/j.copbio.2011.11.026

102. Ozyilmaz G., Gunay E. Clarification of apple, grape and pear juices by co-immobilized amylase, pectinase and cellulose. Food Chem. 2023;398:133900. doi 10.1016/j.foodchem.2022.133900

103. Patel R.N., Banerjee A., Ko R.Y., Howell J.M., Li W.S., Comezoglu F.T., Partyka R.A., Szarka F.T. Enzymic preparation of (3R-cis)3-(acetyloxy)-4-phenyl-2-azetidinone: a taxol side-chain synthon. Biotechnol Appl Biochem. 1994;20(1):23-33. doi 10.1111/j.14708744.1994.tb00304.x

104. Pedone E., Limauro D., Bartolucci S. The machinery for oxidative protein folding in thermophiles. Antioxid Redox Signal. 2008;10(1): 157-169. doi 10.1089/ars.2007.1855

105. Peng Z.Q., Li C., Lin Y., Wu S.S., Gan L.H., Liu J., Yang S.L., Zeng X.H., Lin L. Cellulase production and efficient saccharification of biomass by a new mutant Trichoderma afroharzianum MEA-12.

106. Biotechnol Biofuels. 2021;14(1):219. doi 10.1186/s13068-02102072-z

107. Pérez J., Muñoz-Dorado J., de la Rubia T., Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol. 2002;5(2):53-63. doi 10.1007/s101230020062-3

108. Perim F.D.S., da Silva W.J., de Souza D.O., Ulhoa C.J., Rezende C.F., Dos Santos L.F., Dos Santos F.R., Silva F.G., Minafra C.S. Effects of the addition of Trichoderma reesei cellulase to broiler chicken

109. diets for a 21-day period. Animals (Basel). 2024;14(10):1467. doi 10.3390/ani14101467

110. Pinheiro B.A., Gilbert H.J., Sakka K., Sakka K., Fernandes V.O., Prates J.A., Alves V.D., Bolam D.N., Ferreira L.M., Fontes C.M. Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum. J Biochem. 2009;424(3): 375-384. doi 10.1042/BJ20091152

111. Podosokorskaya O.A., Bonch-Osmolovskaya E.A., Novikov A.A., Kolganova T.V., Kublanov I.V. Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. Int J Syst Evol Microbiol. 2013;63(Pt. 1):86-92. doi 10.1099/ijs.0.041012-0

112. Puri M., Sharma D., Barrow C.J., Tiwary A.K. Optimisation of novel method for the extraction of steviosides from Stevia rebaudiana leaves. Food Chem. 2012;132(3):1113-1120. doi 10.1016/j.foodchem.2011.11.063

113. Rabinovich M.L., Melnick M.S., Bolobova A.V. The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Mosc). 2002;67(8):850-871. doi 10.1023/a:1019958419032

114. Ramakrishnan K., Johnson R.L., Winter S.D., Worthy H.L., Thomas C., Humer D.C., Spadiut O., Hindson S.H., Wells S., Barratt A.H., Menzies G.E., Pudney C.R., Jones D.D. Glycosylation increases active site rigidity leading to improved enzyme stability and turnover. FEBS J. 2023;290(15):3812-3827. doi 10.1111/febs.16783

115. Ranjan R., Rai R., Bhatt S.B., Dhar P. Technological road map of Cellulase: a comprehensive outlook to structural, computational, and industrial applications. Biochem Eng J. 2023;198:109020. doi 10.1016/j.bej.2023.109020

116. Reese E.T., Mandels M. Enzymic hydrolysis of cellulose and its derivatives. Methods Carbohydr Chem. 1963;3:139-143

117. Robledo M., Jiménez-Zurdo J.I., Soto M.J., Velázquez E., Dazzo F., Martínez-Molina E., Mateos P.F. Development of functional symbiotic white clover root hairs and nodules requires tightly regulated production of rhizobial cellulase CelC2. Mol Plant Microbe Interact. 2011;24(7):798-807. doi 10.1094/MPMI-10-10-0249

118. Rong Y., Zhang L., Chi Z., Wang X. A carboxymethyl cellulase from a marine yeast (Aureobasidium pullulans 98): its purification, characterization, gene cloning and carboxymethyl cellulose digestion. J Ocean Univ China. 2015;14:913-921. doi 10.1007/s11802-0152574-4

119. Rubin-Pitel S.B., Zhao H. Recent advances in biocatalysis by directed enzyme evolution. Comb Chem High Throughput Screen. 2006; 9(4):247-257. doi 10.2174/138620706776843183

120. Sadhu S., Maiti T.K. Cellulase production by bacteria: a review. Br Microbiol Res J. 2013;3(3):235-258. doi 10.9734/BMRJ/2013/2367

121. Sadhu S., Ghosh P.K., Aditya G., Maiti T.K. Optimization and strain improvement by mutation for enhanced cellulase production by Bacillus sp. (MTCC10046) isolated from cow dung. J King Saud Univ

122. Sci. 2014;26(4):323-332. doi 10.1016/j.jksus.2014.06.001

123. Sajith S., Priji P., Sreedevi S., Benjamin S. An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci. 2016;6(1): 461. doi 10.4172/2155-9600.1000461

124. Sakamoto K., Touhata K., Yamashita M., Kasai A., Toyohara H. Cellulose digestion by common Japanese freshwater clam Corbicula japonica. Fish Sci. 2007;73(3):675-683. doi 10.1111/j.1444-2906.2007.01381.x

125. Sangkharak K., Vangsirikul P., Janthachat S. Strain improvement and optimization for enhanced production of cellulase in Cellulomonas sp. TSU-03. Afr J Microbiol Res. 2012;6(5):1079-1084. doi 10.5897/AJMR11.1550

126. Schwarz W.H. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol. 2001;56:634-649. doi 10.1007/s002530100710

127. Selzer K., Hassen A., Akanmu A.M., Salem A.Z.M. Digestibility and rumen fermentation of a high forage diet pre-treated with a mixture of cellulase and xylanase enzymes. South Afr J Anim Sci. 2021;51(3):399-406. doi 10.4314/sajas.v51i3.14

128. Sha H., Zhao B., Yang Y., Zhang Y., Zheng P., Cao S., Wang Q., Wang G. Enhanced anaerobic digestion of corn stover using magnetized cellulase combined with Ni-graphite coating. Energy. 2023; 262(B):125532. doi 10.1016/j.energy.2022.125532

129. Shankar A., Saini S., Sharma K.K. Fungal-integrated second-generation lignocellulosic biorefinery: utilization of agricultural biomass for co-production of lignocellulolytic enzymes, mushroom, fungal

130. polysaccharides, and bioethanol. Biomass Convers Biorefin. 2024; 14(1):1117-1131. doi 10.1007/s13399-022-02969-1

131. Sharma V., Tsai M.L., Nargotra P., Chen C.W., Sun P.P., Singhania R.R., Patel A.K., Dong C.D. Journey of lignin from a roadblock to bridge for lignocellulose biorefineries: a comprehensive review. Sci Total Environ. 2023;861:160560. doi 10.1016/j.scitotenv.2022.60560

132. Shipkowski S., Brenchley J.E. Characterization of an unusual coldactive beta-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Appl Environ Microbiol. 2005;71(8):4225-4232. doi 10.1128/AEM.71.8.4225-4232.2005

133. Silva T.P., de Albuquerque F.S., Dos Santos C.W.V., Franco M., Caetano L.C., Pereira H.J.V. Production, purification, characterization and application of a new halotolerant and thermostable endoglucanase of Botrytis ricini URM 5627. Bioresour Technol. 2018;270:263-269. doi 10.1016/j.biortech.2018.09.022

134. Singh A., Bajar S., Devi A., Pant D. An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresour Technol Rep. 2021;14:100652. doi 10.1016/j.biteb.2021.100652

135. Singh S.P., Purohit M.K., Aoyagi C., Kitaoka M., Hayashi K. Effect of growth temperature, induction, and molecular chaperones on the solubilization of over-expressed cellobiose phosphorylase from Cellvibrio gilvus under in vivo conditions. Biotechnol Bioproc E. 2010; 15(2):273-276. doi 10.1007/s12257-009-0023-1

136. Singhania R.R., Patel A.K., Pandey A. The industrial production of enzymes. In: Soetaert W., Vandamme E.J. (Eds) Industrial Biotechnology. Sustainable Growth and Economic Success. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010;207-225

137. Sivasankar P., Poongodi S., Sivakumar K., Al-Qahtani W.H., Arokiyaraj S., Jothiramalingam R. Exogenous production of cold-active cellulase from polar Nocardiopsis sp. with increased cellulose hydrolysis efficiency. Arch Microbiol. 2022;204(4):218. doi 10.1007/s00203-022-02830-z

138. Souza T.V., Araujo J.N., da Silva V.M., Liberato M.V., Pimentel A.C., Alvarez T.M., Squina F.M., Garcia W. Chemical stability of a coldactive cellulase with high tolerance toward surfactants and chao

139. tropic agent. Biotechnol Rep (Amst). 2015;9:1-8. doi 10.1016/j.btre. 2015.11.001

140. Tansey M.R. Agar-diffusion assay of cellulolytic ability of thermophilic fungi. Arch Mikrobiol. 1971;77(1):1-11. doi 10.1007/BF00407983

141. Tian L., Conway P.M., Cervenka N.D., Cui J., Maloney M., Olson D.G., Lynd L.R. Metabolic engineering of Clostridium thermocellum for n-butanol production from cellulose. Biotechnol Biofuels. 2019;12: 186. doi 10.1186/s13068-019-1524-6

142. Tsuji A., Sato S., Kondo A., Tominaga K., Yuasa K. Purification and characterization of cellulase from North Pacific krill (Euphausia pacifica). Analysis of cleavage specificity of the enzyme. Comp Biochem Physiol B Biochem Mol Biol. 2012;163(3-4):324-333. doi 10.1016/j.cbpb.2012.08.005

143. Uhlig H. (Ed.) Industrial Enzymes and Their Applications. John Wiley & Sons, 1998 Vieille C., Zeikus G.J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001;65(1):1-43. doi 10.1128/MMBR.65.1.1-43.2001

144. Wackett L.P. Microbial industrial enzymes: an annotated selection of World Wide Web sites relevant to the topics in microbial biotechnology. Microb Biotechnol. 2019;12(2):405-406. doi 10.1111/17517915.13389

145. Xu Q., Resch M.G., Podkaminer K., Yang S., Baker J.O., Donohoe B.S., Wilson C., … Brown S.D., Lynd L.R., Bayer E.A., Himmel M.E., Bomble Y.J. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Sci Adv. 2016;2(2):e1501254. doi 10.1126/sciadv.1501254

146. Xu X., Li J., Shi P., Ji W., Liu B., Zhang Y., Yao B., Fan Y., Zhang W. The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1. Sci Rep. 2016;6:31108. doi 10.1038/srep31108

147. You Y.W., Wang T.H. Cloning and expression of endoglucanase of marine cold-adapted bacteria Pseudoalteromonas sp. MB-1. Wei Sheng Wu Xue Bao. 2005;45(1):142-144 (in Chinese)

148. Yu D., Ma X., Huang Y., Jiang L., Wang L., Han C., Yang F. Immobilization of cellulase on magnetic nanoparticles for rice bran oil extraction in a magnetic fluidized bed. Int J Food Eng. 2022;18(1):15-26. doi 10.1515/ijfe-2021-0111

149. Zanuso E., Ruiz H.A., Domingues L., Teixeira J.A. Magnetic nanoparticles as support for cellulase immobilization strategy for enzymatic hydrolysis using hydrothermally pretreated corn cob biomass. BioEnergy Res. 2022;15(4):1946-1957. doi 10.1007/s12155-02110384-z

150. Zeng R., Xiong P., Wen J. Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles. 2006;10(1):79-82. doi 10.1007/s00792-005-0475-y

151. Zhang Q., Liu N., Wang S., Liu Y., Lan H. Effects of cyclic cellulase conditioning and germination treatment on the γ-aminobutyric acid content and the cooking and taste qualities of germinated brown rice. Food Chem. 2019;289:232-239. doi 10.1016/j.foodchem.2019.03.034

152. Zhang Y.H.P., Himmel M.E., Mielenz J.R. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv. 2006; 24(5):452-481. doi 10.1016/j.biotechadv.2006.03.003

153. Zhao C.H., Liu X., Zhan T., He J. Production of cellulase by Trichoderma reesei from pretreated straw and furfural residues. RSC Advances. 2018;8(63):36233-36238. doi 10.1039/C8RA05936E

154. Zhao H., Chockalingam K., Chen Z. Directed evolution of enzymes and pathways for industrial biocatalysis. Curr Opin Biotechnol. 2002; 13(2):104-110. doi 10.1016/s0958-1669(02)00291-4

155. Zheng F., Tu T., Wang X., Wang Y., Ma R., Su X., Xie X., Yao B., Luo H. Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 900.73 by site- directed mutagenesis on loop 6. Biotechnol Biofuels. 2018;11:76. doi 10.1186/s13068-018-1080-5


Рецензия

Просмотров: 6


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)