1. Bagot R.C., Meaney M.J. Epigenetics and the biological basis of gene × environment interactions. J. Am. Acad. Child Adolesc. Psychiatry. 2010;49(8):752-771. https://doi.org/10.1016/j.jaac.2010.06.001
2. Bale T.L. Epigenetic and transgenerational reprogramming of brain development. Nat. Rev. Neurosci. 2015;16:332-344. https://doi.org/10.1038/nrn3818
3. Belyaev D.K., Borodin P.M. Vliyanie stressa na nasledstvennuyu izmenchivost i ego rol v evolyutsii. Evolyutsionnaya Genetika [Influence of stress on the genetic variability and its role in evolution. Evolutionary Genetics]. Leningrad: Leningrad State University Publ., 1982:35-59.
4. Blank T., Spiess J. Corticotropin-releasing factor (CRF) and CRF-related peptides - a linkage between stress and anxiety. Stress- From Molecules to Behavior: A Comprehensive Analysis of the Neurobiology of Stress Responses. 2009. Weinheim: Wiley-VCH, 2010:151-165.
5. Dygalo N.N., Shishkina G.T., Borodin P.M., Naumenko E.V. Role of the brain neurochemical systems in altering the reactivity of the hypophyseal- adrenal system in the gray rat selected for behavior. Zhurnal evolyutsionnoy biokhimii i fiziologii = Journal of Evolutionary Biochemistry and Physiology. 1985;21(4):342-347.
6. Francis D.D., Diorio J., Plotsky P.M., Meaney M.J. Environmental enrichment reverses the effects of maternal separation on stress reactivity. J. Neurosci. 2002;22(18):7840-7843.
7. Gariépy J.-L., Rodriguiz R.M., Jones B.C. Handling, genetic and housing effects on the mouse stress system, dopamine function, and behavior. Pharmacol. Biochem. Behav. 2002;73(1):7-17. https://doi.org/10.1016/S0091-3057(02)00789-X
8. Herbeck Y.E., Os’kina I.N., Gulevich R.G., Plyusnina I.Z. Effects of maternal methyl-supplement diet on hippocampal glucocorticoid receptor mRNA expression in rats selected for behavior. Cytol. Genet. 2010;44(2):108-113. https://doi.org/10.3103/S0095452710020064
9. Herbeck Y.E., Os’kina I.N., Gulevich R.G., Plyusnina I.Z. Effects of maternal methyl-supplement diet on hippocampal glucocorticoid receptor mRNA expression in rats selected for behavior. TSitologiia i genetika = Cytology and Genetics. 2010;44(2):45-52.
10. Gonzalez-Liencres C., Shamay-Tsoory S.G., Brüne M. Towards a neuroscience of empathy: ontogeny, phylogeny, brain mechanisms, context and psychopathology. Neurosci. Biobehav. Rev. 2013;37(8): 1537-1548. https://doi.org/10.1016/j.neubiorev.2013.05.001
11. Konoshenko M.Y., Plyusnina I.Z. Behavioral effects of bidirectional selection for behavior towards human in virgin and lactate Norway rats. Behav. Processes. 2012;90(2):180-188. https://doi.org/10.1016/j.beproc.2012.01.007
12. Kosten T.A., Lee H.J., Kim J.J. Early life stress impairs fear conditioning in adult male and female rats. Brain Res. 2006;1087:142-150. https://doi.org/10.1016/j.brainres.2006.03.009
13. Levine S. Maternal and environmental influences on the adrenocortical response to stress in weanling rats. Science. 1967;156:258-260.
14. Liu D., Diorio J., Tannenbaum B., Caldji C., Francis D., Freedman A., Sharma S., Pearson D., Plotsky P.M., Meaney M.J. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitaryadrenal responses to stress. Science. 1997;277(5332):1659-1662.
15. Macri S., Mason G.J., Wu H. Dissociation in the effects of neonatal maternal separations on maternal care and the offspring’s HPA and fear responses in rats. Eur. J. Neurosci. 2004;20(4):1017-24. https://doi.org/10.1111/j.1460-9568.2004.03541.x
16. Marini F., Pozzato C., Andreetta V., Jansson B., Arban R., Domenici E., Carboni L. Single exposure to social defeat increases corticotropinreleasing factor and glucocorticoid receptor mRNA expression in rat hippocampus. Brain Res. 2006;1067:25- 35. https://doi.org/10.1016/j.brainres.2005.10.002
17. McEwen B.S. Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology. 2000;22(2):108- 124.
18. Murphy B.E. Some studies of the protein binding of steroids and their application to the routine micro and ultramicro measurement of various steroids in body fluids by competitive protein-binding radioassay. J. Clin. Endocrinol. Metab. 1967;27:973-990.
19. Oskina I.N., Herbeck Yu.E., Shikhevich S.G., Plyusnina I.Z., Gulevich R.G. Alterations in the hypothalamus-pituitary-adrenal and immune sys-tems during selection of animals for tame behavior. Informatsionnyy vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2008:12(1/2):39-49.
20. Oskina I.N., Plyusnina I.Z. Pituitary-adrenal axis of wild gray rats under selection for domestic behavior and neonatal handling. Materialy nauchnoy konferentsii «Endokrinnye mekhanizmy regulyatsii funktsiy v norme i patologii» [Proc. sci. conf. “Endocrine mechanisms of regulation of functions in health and disease”]. Novosibirsk, 1997:114-115.
21. Peinnequin A., Mouret C., Birot O., Alonso A., Mathieu J., Clarençon D., Agay D., Chancerelle Y., Multon E. Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green. BMC Immunology. 2004;5:3. https://doi.org/10.1186/1471-2172-5-3
22. Plyusnina I., Oskina I. Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans. Physiol. Behav. 1997;61(3):381-385.
23. Plyusnina I.Z., Oskina I.N., Tibeikina M.A., Popova N.K. Cross-fostering effects on weight, exploratory activity, acoustic startle reflex and corticosterone stress response in Norway gray rats selected for elimination and for enhancement of aggressiveness towards human. Behav. Genet. 2009;39(2):202-212. https://doi.org/10.1007/s10519- 008-9248-6
24. Plyusnina I.Z., Tarantsev I.G., Bulushev E.D., Konoshenko M.Y., Kozhemyakina R.V., Gerbek Y.E., Os’kina I.N. Analysis of maternal behavior in tame and aggressive gray rats. Zhunral vysshey nervnoy deyatelnosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity 2013;63(3):375-383.
25. Plyusnina I.Z., Tarantsev I.G., Bulushev E.D., Konoshenko M.Y., Kozhemyakina R.V., Gerbek Y.E., Os’kina I.N. Analysis of maternal behavior in tame and aggressive gray rats. Neurosci. Behav. Physiol. 2014;44(8):856-862. https://doi.org/10.1007/s11055-014-9993-3
26. Prasolova L.A., Gerbek Yu.E., Gulevich R.G., Shikhevich S.G., Konoshenko M.Yu., Kozhemyakina R.V., Oskina I.N., Plyusnina I.Z. The effects of prolonged selection for behavior on the stress response and activity of the reproductive system of male grey rats (Rattus norvegicus). Genetika = Genetics (Moscow). 2014;50(8):959-966.
27. Steimer T., Escorihuela R.M., Fernández-teruel A., Driscoll A.P. Longterm behavioural and neuroendocrine changes in Roman high- (RHA/Verh) and low-(RLA-Verh) avoidance rats following neonatal handling. Int. J. Dev. Neurosci. 1998;16(3-4):165- 174. https://doi.org/10.1016/S0736-5748(98)00032-X
28. Tang A.C., Akers K.G., Reeb B.C., Romeo R.D., McEwen B.S. Programming social, cognitive, and neuroendocrine development by early exposure to novelty. Proc. Natl Acad. Sci. USA. 2006;103: 15716-15721.
29. Tang A.C., Reeb-Sutherland B.C., Romeo R.D., McEwen B.S. On the causes of early life experience effects: evaluating the role of mom. Front. Neuroendocrinol. 2014;35(2):245-51. https://doi.org/10.1016/j.yfrne.2013.11.002
30. Tinnikov A.A., Bazhan N.M. Measuring glucocorticoids in the blood plasma and adrenals by competitive hormone binding by proteins without prior extraction. Laboratornoe delo = Laboratory Science. 1984;12:709-713.
31. Todeschin A.S., Winkelmann-Duarte E.C., Jacob M.H., Aranda B.C., Jacobs S., Fernandes M.C., Ribeiro M.F., Sanvitto G.L., Lucion A.B. Effects of neonatal handling on social memory, social interaction, and number of oxytocin and vasopressin neurons in rats. Horm. Behav. 2009;56(1):93-100. https://doi.org/10.1016/j.yhbeh.2009.03.006
32. Veenema A.H. Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors. Horm. Behav. 2012;61(3):304-312. https://doi.org/ 10.1016/j.yhbeh.2011.12.002
33. Veenema A.H., Torner L., Blume A., Beiderbeck D.I., Neumann I.D. Low inborn anxiety correlates with high intermale aggression: link to ACTH response and neuronal activation of the hypothalamic paraventricular nucleus. Horm. Behav. 2007;51(1):11- 19. https://doi.org/10.1016/j.yhbeh.2006.07.004
34. Weaver I.C., Cervoni N., Champagne F.A., D’Alessio A.C., Sharma S., Seckl J.R., Dymov S., Szyf M., Meaney M.J. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004;7(8):847-854. https://doi.org/10.1038/nn1276
35. Zhang T.Y., Labonté B., Wen X.L., Turecki G., Meaney M.J. Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology. 2013;38:111-123. https://doi.org/ 10.1038/npp.2012.149