Effect of single ethanol administration on behavior and the consumption and preference of ethanol in tame and aggressive rats
https://doi.org/10.18699/VJ16.147
Abstract
According to the hypothesis of stress relief, a high level of anxiety or stress may cause greater alcohol consumption and alcohol addiction. However, data obtained with experimental animals do not always confirm this statement. Model strains of Norway rats selected for tame and aggressive attitude to humans are some of the models for investigation of relationships among anxiety, the function of the hypothalamus – pituitary – adrenal (HPA) axis, and predisposition to alcohol addiction. Former studies of tame rats, based on the blood levels of corticosterone and adrenocorticotropic hormone (ACTH) in rest and stress, revealed a decrease of the manifestation of anxiety-like behavior and of the HPA function in comparison to aggressive and unselected rats. This work assesses the preferred consumption of ethanol at various concentrations with free access to ethanol and water (two bottlechoice paradigm) and the effect of acute ethanol administration on the behavior of aggressive and tame male rats in an elevated plus maze. After intraperitoneal alcohol administration, tame and aggressive males showed a reduced number of rearings in the center of the elevated plus maze, but the reduction was statistically significant only in the former. It pointed not only to the absence of an anxiolytic action of 12 % ethanol but also to enhancement of anxietylike behavior in tame rats. After seven-day alcohol withdrawal, tame rats showed signs of deprivation, because the alcohol consumption was greater than before the withdrawal. Thus, the difference between tame and aggressive rats in alcohol consumption varies with alcohol concentration. Aggressive males drank more alcohol than water only at the 2 % concentration. Hence, the hypothesis of stress relief is confirmed only for this concentration.
About the Authors
R. V. KozhemyakinaRussian Federation
S. G. Shikhevich
Russian Federation
A. Cagan
Russian Federation
R. G. Gulevich
Russian Federation
References
1. Albert F.W., Shchepina O., Winter C., Römpler H., Teupser D., Palme R., Ceglarek U., Kratzsch J., Sohr R., Trut L.N., Thiery J., Morgenstern R., Plyusnina I.Z., Schöneberg T., Pääbo S. Phenotypic differences in behavior, physiology and neurochemistry between rats selected for tameness and for defensive aggression towards humans. Horm. Behav. 2008;53:413-421. DOI 10.1016/j.yhbeh.2007.11.010
2. Ariza M., Garolera M., Jurado M.A., Garcia-Garcia I., Hernan I., Sánchez-Garre C., Vernet-Vernet M., Sender-Palacios M.J., Marques- Iturria I., Pueyo R., Segura B., Narberhaus A. Dopamine genes (DRD2/ANKK1-TaqA1 and DRD4-7R) and executive function: their interaction with obesity. PLoS One. 2012;7(7):e41482. DOI 10.1371/journal.pone.0041482
3. Beiderbeck D.I., Reber S.O., Havasi A., Bredewold R., Veenema A.H., Neumann I.D. High and abnormal forms of aggression in rats with extremes in trait anxiety – involvement of the dopamine system in the nucleus accumbens. Psychoneuroendocrinology. 2012;37(12):1969-1980. DOI 10.1016/j.psyneuen.2012.04.011
4. Berman S., Ozkaragoz T., Young R. McD, Noble E. D2 dopamine receptor gene polymorphism discriminates two kinds of novelty seeking. Pers. Indiv. Differ. 2002;33(6):867-882. DOI 10.1016/S0191-8869(01)00197-0
5. Blum K., Oskar-Bermann M. Genetic addiction risk score (GARS): molecular neurogenetic evidence for predisposition to reward deficiency syndrome (RDS). Mol. Neurobiol. 2014;50:765-796. DOI 10.1007/s12035-014-8726-5
6. Colombo G., Agabio R., Lobina C., Reali R., Zocchi A., Fadda F., Gessa G.L. Sardinian alcohol-preferring rats: a genetic animal model of anxiety. Physiol. Behav. 1995;57:1181–1185. DOI 10.1016/0031-9384(94)00382-F
7. Comings D.E., Blum K. Reward deficiency syndrome: genetic aspects of behavioral disorders. Prog. Brain Res. 2000;126:325-341. DOI 10.1016/S0079-6123(00)26022-6
8. Conger J.J. Alcoholism: theory, problem and challenge. Quart J. Stud. Alcohol. 1956;17(2):296-305.
9. De Wit H., Söderpalm A.H.V., Nikolayev L., Young L. Effects of acute social stress on alcohol consumption in healthy subjects. Alcohol. Clin. Exp. Res. 2003;27:1270- 1277. DOI 10.1097/01.ALC.0000081617.37539.D6
10. Gulevich R.G., Shikhevich S.G., Konoshenko M.Y., Kozhemyakina R.V., Herbeck Y.E., Prasolova L.A., Oskina I.N., Plyusnina I.Z. The influence of social environment in early life on the behavior, stress response, and reproductive system of adult male Norway rats selected for different attitudes to humans. Physiol. Behav. 2015; 15(144):116-123. http://dx.doi.org/10.1016/j.physbeh.2015.03.018
11. Henniger M.S., Spanagel R., Wigger A., Landgraf R., Hölter S.M. Alcohol self- administration in two rat lines selectively bred for extremes in anxiety-related behavior. Neuropsychopharmacology. 2002;26(6):729-736.
12. Hoenicka J., Quiñones-Lombraña A., España-Serrano L., Alvira-Botero X., Kremer L., Pérez-González R., Rodríguez-Jiméne R., Jiménez-Arriero M., Ponce G., Palomo T. The ANKK1 gene associated with addictions is expressed in astroglial cells and upregulated by apomorphine. Biol. Psychiat. 2010;67(1):3-11. DOI 10.1016/j.biopsych.2009.08.012
13. Kudryavtseva N., Gerrits M.A., Avgustinovich D.F., Tenditnik M.V., Van Ree J.M. Anxiety and ethanol consumption in victorious and defeated mice; effect of kappa- opioid receptor activation. Eur. Neuropsychopharmacol. 2006;16(7):504-511. DOI 10.1016/j.euroneuro.2006.01.002
14. Lu R.B., Lee J.F., Huang S.Y., Lee S.Y., Chang Y.H., Kuo P.H., Chen S.L., Chen S.H., Chu C.H., Lin W.W., Wu P.L., Ko H.C. Interaction between ALDH2*1*1 and DRD2/ANKK1 TaqI A1A1 genes may be associated with antisocial personality disorder not co-morbid with alcoholism. Addict. Biol. 2012;17(5):865-874. DOI 10.1111/j.1369- 1600.2010.00268.x
15. Meisch R.A., Lemaire G.A. Drug Self-administration. Ed. F. van Harren. Methods in Behavioral Pharmacology. Amsterdam: Elsevier, 1993;257-300.
16. Möller C., Wiklund L., Thorsell A., Hyytiä P., Heilig M. Decreased measures of experimental anxiety in rats bred for high alcohol preference. Alcohol. Clin. Exp. Res. 1997;21:656-660. DOI 10.1111/j.1530-0277.1997.tb03818.x
17. Naumenko E.V., Popova N.K., Nikulina E.M., Dygalo N.N., Shishkina G.T., Borodin P.M., Markel A.L. Behavior, adrenocortical activity, and brain monoamines in Norway rats selected for reduced aggressiveness towards man. Pharmacol. Biochem. Behav. 1989;33: 85-91.
18. Neville M.J., Johnstone E.C., Walton R.T. Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum. Mutat. 2004;23:540–545. DOI 10.1002/humu.20039
19. Nikulina E.M., Avgustinovich D.F., Popova N.K. Neural control of predatory aggression in wild and domesticated animals. Neurosci. Biobehav. Rev. 1992;18(1):65- 72.
20. Oskina I.N., Herbeck Yu.E., Shikhevich S.G., Plyusnina I.Z., Gulevich R.G. Alterations in the hypothalamus-pituitary-adrenal and immune systems during selection of animals for tame behavior. Informatsionnyy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2008;12(1/2):39-49.
21. Plyusnina I., Oskina I. Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans. Physiol. Behav. 1997;61(3):381-385.
22. Plyusnina I.Z., Solov’eva M.Y., Oskina I.N. Effect of domestication on aggression in gray Norway rats. Behav. Genet. 2011;41(4):583-592. DOI 10.1007/s10519-010-9429-y
23. Plyusnina I.Z., Trut L.N., Karpushkeeva N.I., Alekhina T.A., Oskina I.N. Some behavioral and physiological features of the nonagouti mutation in Norway rats selected for aggressive behavior. Zhurnal vysshey nervnoy deyatelnosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2003;53(6):730-738.
24. Rodgers R.J., Cole J.C. The elevated plus-maze: pharmacology, methodology and ethology. Ethology and Psychopharmacology. Eds S.J. Cooper, C.A. Hendrie. Chichester: John Wiley and Sons Ltd., 1994;9-44.
25. Spanagel R., Noori H.R., Heilig M. Stress and alcohol interactions: animal studies and clinical significance. Trends Neurosci. 2014;37(4): 219-227. http://dx.doi.org/10.1016/j.tins.2014.02.006
26. Stewart R.B., Gatto G.J., Lumeng L., Li T.-K., Murphy J.M. Comparison of alcohol- preferring (P) and nonpreferring (NP) rats on tests of anxiety and for the anxiolytic effects of ethanol. Alcohol. 1993;10: 1-10. DOI 10.1016/0741- 8329(93)90046-Q
27. Thomas S.E., Bacon A.K., Randall P.K., Brady K.T., See R.E. An acute psychosocial stressor increases drinking in non-treatment-seeking alcoholics. Psychopharmacology. 2011;218:19-28. DOI 10.1007/s00213-010-2163-6
28. Veenema A.H., Neumann I.D. Neurobiological mechanisms of aggression and stress coping: a comparative study in mouse and rat selection lines. Brain Behav. Evol. 2007;70:274-285. DOI 10.1159/000105491