Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Effects of early neonatal proinflammatory stress on the expression of BDNF transcripts in the brain regions of prepubertal male rats

https://doi.org/10.18699/VJ16.149

Abstract

Early postnatal proinflammatory stress provokes behavioral impairments in adulthood; however, underlying mechanisms are still elusive. Brain-derived neurotrophic factor (BDNF) plays a crucial role in neuroplastic changes in health as well as at pathology. The BDNF gene is transcribed to exon-specific mRNAs and the pattern of their expression depends on stimulus. We suggest that disturbances of exonspecific BDNF mRNA expression in the brain regions after stress induced by proinflammatory stimuli in early postnatal period could be one of the underlying mechanisms of consequent behavioral impairments. Thus, the aim of the study was to investigate the effects of proinflammatory stress in early postnatal ontogeny on the expression of BDNF and the patterns of expression of the BDNF gene in the neocortex and hippocampus of prepubertal male rats. The proinflammatory stress was induced by subcutaneous administration of bacterial lipopolysaccharide (LPS) to rat pups on postnatal days 3 and 5, while BDNF expression was analyzed in 36-day-old rats. BDNF polypeptide concentration was estimated by means of an enzyme-linked immunosorbent assay, while quantitative polymerase chain reaction followed by reverse transcription was used to detect exon-specific BDNF mRNA expression. The levels of BDNF and transcripts, containing common exon IX were similar in the control and LPS-treated rats. In the rats treated with LPS, the level of BDNF mRNA, containing exon IV, was lower in the neocortex, but not in the hippocampus. No changes in the expression of the transcripts containing exons I and VI were observed in any brain structure studied. We suggest that specific alterations in BDNF expression may be involved in the susceptibility to the development of behavioral impairments of animals subjected to early proinflammatory stress.

About the Authors

D. I. Peregud
Federal State Budgetary Institution “V. Serbsky Federal Medical Research Centre for Psychiatry and Drug Addiction”, of the Ministry of Health of the Russian Federation, Moscow, Russia Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
Russian Federation


S. V. Freiman
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia Research and Practice Psychoneurology Centre, Moscow Healthcare Department, Moscow, Russia
Russian Federation


A. O. Tishkina
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
Russian Federation


L. S. Sokhranyaeva
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
Russian Federation


N. A. Lazareva
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
Russian Federation


M. V. Onufriev
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia Research and Practice Psychoneurology Centre, Moscow Healthcare Department, Moscow, Russia
Russian Federation


M. Y. Stepanichev
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
Russian Federation


N. V. Gulyaeva
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
Russian Federation


References

1. Aid T., Kazantseva A., Piirsoo M., Palm K., Timmusk T. Mouse and rat BDNF gene structure and expression revisited. J. Neurosci. Res. 2007;85:525-535.

2. Altman J., Bayer S.A. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J. Comp. Neurol. 1990;301:365-381.

3. Arnold S.E., Trojanowski J.Q. Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J. Comp. Neurol. 1996;367:274-292.

4. Baj G., Leone E., Chao M.V., Tongiorgi E. Spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments. Proc. Natl. Acad. Sci. USA. 2011;108:16813-16818.

5. Calabrese F., Rossetti A.C., Racagni G., Gass P., Riva M.A., Molteni R. Brain- derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front. Cell Neurosci. 2014;8:430. DOI 10.3389/fncel.2014.00430.eCollection 2014

6. Chiaruttini C., Sonego M., Baj G., Simonato M., Tongiorgi E. BDNF mRNA splice variants display activity-dependent targeting to distinct hippocampal laminae. Mol. Cell. Neurosci. 2008;37:11-19.

7. Doosti M.-H., Bakhtiari A., Zare P., Amani M., Majidi-Zolbanin N., Babri S., Salari A.A. Impacts of early intervention with fluoxetine following early neonatal immune activation on depression-like behaviors and body weight in mice. Progr. Neuro- Psychopharmacol. Biol. Psychiat. 2013;43:55-65.

8. Duclot F., Kabbaj M. Individual differences in novelty seeking predict subsequent vulnerability to social defeat through a differential epigenetic regulation of brain-derived neurotrophic factor expression. J. Neurosci. 2013;33:11048-11060.

9. Erburu M., Cajaleon L., Guruceaga E., Venzala E., Muñoz-Cobo I., Beltrán E., Puerta E., Tordera R.M. Chronic mild stress and imipramine treatment elicit opposite changes in behavior and in gene expression in the mouse prefrontal cortex. Pharmacol. Biochem. Behav. 2015;135:227-236.

10. Farhang S., Barar J., Fakhari A., Mesgariabbasi M., Khani S., Omidi Y., Farnam A. Asymmetrical expression of BDNF and NTRK3 genes in frontoparietal cortex of stress- resilient rats in an animal model of depression. Synapse. 2014;68:387-393.

11. Grigoryan G.A., Dygalo N.N., Gekht A.B., Stepanichev M.Iu., Guliaeva N.V. Molecular and cellular mechanisms of depression. Role of glucocorticoids, cytokines, neuro- transmitters, and trophic factors in genesis of depressive disorders. Uspekhi fiziologicheskikh nauk = Advance in Physiological Sciences (Moscow). 2014;45(2):3- 19.

12. Guan Z., Fang J. Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav. Immun. 2006;20:64- 71.

13. Ivanov A.D. The role of NGF and BDNF in mature brain activity regulation. Zhurnal vysshey nervnoy deyatelnosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2014;64:137-146.

14. Kawai T., Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 2007;13:460-469.

15. Kranjac D., McLinden K.A., Deodati L.E., Papini M.R., Chumley M.J., Boehm G.W. Peripheral bacterial endotoxin administration triggers both memory consolidation and reconsolidation deficits in mice. Brain Behav. Immun. 2012;26:109-121.

16. Laus M.F., Vales L.D., Costa T.M., Almeida S.S. Early postnatal protein-calorie malnutrition and cognition: A review of human and animal studies. Int. J. Environ. Res. Public Health. 2011;8:590-612.

17. Lehmann K., Rodriguez E.G., Kratz O., Moll G.H., Dawirs R.R., Teuchert-Noodt G. Early preweaning methamphetamine and postweaning rearing conditions interfere with the development of peripheral stress parameters and neural growth factors in gerbils. Int. J. Neurosci. 2007;117:1621-1638.

18. Lipsky R.H., Xu K., Zhu D., Kelly C., Terhakopian A., Novelli A., Marini A.M. Nuclear factor kappaB is a critical determinant in Nmethyl- D-aspartate receptor- mediated neuroprotection. J. Neurochem. 2001;78:254-264.

19. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real- time quantitative PCR and the 2-DDCt method. Methods. 2001;25:402-408.

20. Loman M.M., Gunnar M.R. Early experience and the development of stress reactivity and regulation in children. Neurosci. Biobehav. Rev. 2010;34:867-876.

21. Lubin F.D., Roth T.L., Sweatt J.D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci. 2008;28:10576-10586.

22. Lucassen P.J., Naninck E.F., van Goudoever J.B., Fitzsimons C., Joels M., Korosi A. Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci. 2013;36:621-631.

23. Lyons M.R., West A.E. Mechanisms of specificity in neuronal activityregulated gene transcription. Prog. Neurobiol. 2011;94:259-295.

24. O’Connor T.G., Ben-Shlomo Y., Heron J., Golding J., Adams D., Glover V. Prenatal anxiety predicts individual differences in cortisol in pre-adolescent children. Biol. Psychiat. 2005;58:211-217.

25. Oskvig D.B., Elkahloun A.G., Johnson K.R., Phillips T.M., Herkenham M. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain. Behav. Immun. 2012;26:623-634.

26. Pruunsild P., Sepp M., Orav E., Koppel I., Timmusk T. Identification of cis-elements and transcription factors regulating neuronal activitydependent transcription of human BDNF gene. J. Neurosci. 2011; 31:3295-3308.

27. Rico J.L.R., Ferraz D.B., Ramalho-Pinto F.J., Morato S. Neonatal exposure to LPS leads to heightened exploratory activity in adolescent rats. Behav. Brain Res. 2010;215;102-109.

28. Roth T.L., Lubin F.D., Funk A.J., Sweatt J.D. Lasting epigenetic influence of early- life adversity on the BDNF. Biol. Psychiat. 2009;65: 760-769.

29. Saha R.N., Liu X., Pahan K. Up-regulation of BDNF in astrocytes by TNF-alpha: a case for the neuroprotective role of cytokine. J. Neuroimmune Pharmacol. 2006;3:212-222.

30. Sakharnova T.A., Vedunova M.V., Mukhina I.V. Brain-derived neurotrophic factor (BDNF) and its role in the functioning of the central nervous system. Neyrokhimiya = Neurochemistry (Moscow). 2012;29:269-277.

31. Schmidt H.D., Sangrey G.R., Darnell S.B., Schassburger R.L., Cha J.H., Pierce R.C., Sadri-Vakili G. Increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area during cocaine abstinence is associated with increased histone acetylation at BDNF exon I-containing promoters. J. Neurochem. 2012;120: 202-209.

32. Shanks N., Larocque S., Meaney M.J. Neonatal endotoxin exposure alters the development of the hypothalamic-pituitary-adrenal axis: early illness and later responsivity to stress. Neurosci. 1995;15: 376-384.

33. Sominsky L., Meehan C.L., Walker A.K., Bobrovskaya L., McLaughlin E.A., Hodgson D.M. Neonatal immune challenge alters reproductive development in the female rat. Hormones Behav. 2012a;62: 345-355.

34. Sominsky L., Walker A.K., Ong L.K., Tynan R.J., Walker F.R., Hodgson D.M. Increased microglial activation in the rat brain following neonatal exposure to a bacterial mimetic. Behav. Brain Res. 2012b;226:351-356.

35. Stepanichev M., Dygalo N.N., Grigoryan G., Shishkina G.T., Gulyaeva N. Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. Biomed. Res. Int. 2014;2014:932757. DOI 10.1155/2014/932757

36. Tabuchi A. Synaptic plasticity-regulated gene expression: a key event in the long- lasting changes of neuronal function. Biol. Pharm. Bull. 2008;31:327-335.

37. Tsankova N.M., Kumar A., Nestler E.J. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J. Neurosci. 2004;24:5603-5610.

38. Walker A.K., Hawkins G., Sominsky L., Hodgson D.M. Transgenerational transmission of anxiety induced by neonatal exposure to lipopolysaccharide: implications for male and female germ lines. Psychoneuroendocrinology. 2012;37:1320-1335.

39. Walker A.K., Hiles S.A., Sominsky L., McLaughlin E.A., Hodgson D.M. Neonatal lipopolysaccharide exposure impairs sexual development and reproductive success in the Wistar rat. Brain Behav. Immun. 2011;25:674-684.

40. Walker A.K., Nakamura T., Byrne R.J., Naicker S., Tynan R.J., Hunter M., Hodgson D.M. Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety-like behaviour and blunted corticosterone responses: implications for the double-hit hypothesis. Psychoneuroendocrinology. 2009;34:1515-1525.

41. Yehuda R., Engel S.M., Brand S.R., Seckl J., Marcus S.M., Berkowitz G.S. Transgenerational effects of posttraumatic stress disorder in babies of mothers exposed to the World Trade Center attacks during pregnancy. J. Clin. Endocrinol. Metab. 2005;90:4115-4118.

42. Zhang J.C., Wu J., Fujita Y., Yao W., Ren Q., Yang C., Li S.X., Shirayama Y., Hashimoto K. Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int. J. Neuropsychopharmacol. 2014;18. DOI 10.1093/ijnp/pyu077


Review

Views: 985


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)