Functional state of the nigrostriatal system of Krushinsky – Molodkina rats during audiogenic seizure expression
https://doi.org/10.18699/VJ16.146
Abstract
Neurochemical mechanisms of initiation and expression of epileptic seizures are poorly explored, and there are no published data that could demonstrate the functional state of the neuromediator systems at the initial state of seizure in the animals genetically prone to seizure. In the current work, we studied the role of extracellular signal-regulated kinase (ERK1/2) in the regulation of the nigrostriatal glutamate, GABA and dopamine neurons of Krushinsky – Molodkina rats at clonus-tonus and ataxia stages of audiogenic seizure. We demonstrated upregulation of ERK1/2 activity upon audio stimulation which was accompanied by increased activation of Synapsin I in the striatum and substantia nigra in comparison to intact Krushinsky – Molodkina rats. The observed exocytosis activation led to secretion of glutamate in the striatum and, as a result, to stimulation of seizures. However, at clonus-tonus stage in the striatum we revealed the changes that could participate in further inhibition of seizure activity, such as increased phosphorylation of tyrosine hydroxylase upon increased ERK1/2 activity followed by activation of dopamine release in the pars compacta of the substantia nigra. At the same time, enhanced D2 and increased D1 dopamine receptor contents were observed. These data revealed attenuation of direct (pro-seizure) and indirect (anti-seizure) pathways of the regulation of the substantia nigra GABA neurons. We demonstrated activation of GABA in the substantia nigra pars reticulate, which probably results in the inhibition of glutamate neurons of the thalamus and could be one of the mechanisms inhibiting seizure activity during ataxia.
About the Authors
N. A. DorofeevaRussian Federation
L. S. Nikitina
Russian Federation
D. V. Zosen
Russian Federation
M. V. Glazova
Russian Federation
E. V. Chernigovskaya
Russian Federation
References
1. Asada H., Kawamura Y., Maruyama K., Kume H., Ding R.G., Kanbara N., Kuzume H., Sanbo M., Yagi T., Obata K. Cleft palate and decreased brain γ-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc. Natl Acad. Sci. 1997; 94(12):6496-6499.
2. Benagiano V., Lorusso L., Flace P., Girolamo F., Rizzi A., Bosco L., Cagiano R., Nico B., Ribatti D., Ambrosi G. VAMP-2, SNAP-25A/B and syntaxin-1 in glutamatergic and GABAergic synapses of the rat cerebellar cortex. BMC Neurosci. 2011;12(1):118.
3. Bernath S., Zigmond M.J. Dopamine may influence striatal GABA release via three separate mechanisms. Brain Res. 1989;476(2): 373-376.
4. Bertran-Gonzalez J., Bosch C., Maroteaux M., Matamales M., Hervé D., Valjent E., Girault J.-A. Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J. Neurosci. 2008;28(22): 5671-5685.
5. Björklund A., Dunnett S.B. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007;30(5)194-202.
6. Bradford H.F., Peterson D. Current views of the pathobiochemistry of epilepsy. Mol. Aspects Med. 1987;9(2):119-172.
7. Chen J., Rusnak M., Luedtke R.R., Sidhu A. D1 dopamine receptor mediates dopamine- induced cytotoxicity via the ERK signal cascade. J. Biol. Chem. 2004;279(38):39317- 39330.
8. Corradini I., Donzelli A., Antonucci F., Welzl H., Loos M., Martucci R., De Astis S., Pattini L., Inverardi F., Wolfer D., Caleo M., Bozzi Y., Verderio C., Frassoni C., Braida D., Clerici M., Lipp H.P., Sala M., Matteoli M. Epileptiform activity and cognitive deficits in SNAP- 25(+/–) mice are normalized by antiepileptic drugs. Cereb. Cortex. 2014;24(2):364-376.
9. DeCastro M., Nankova B.B., Shah P., Patel P., Mally P.V., Mishra R., La Gamma E.F. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Mol. Brain Res. 2005;142(1):28-38.
10. Deransart C., Depaulis A. The control of seizures by the basal ganglia? A review of experimental data. Epileptic Disord. 2002;4(3):61-72.
11. Dorofeeva N.A., Glazova M.V., Khudik K.A., Nikitina L.S., Kirillova D., Chernigovskaya E.V. [Comparative Study of Nigrostriatal Systems in Wistar Rats and Rats Prone to Seizures]. Zh. Evol. Biokhim. Fiziol. 2015;51(3):204-213.
12. Doyle S., Pyndiah S., De Gois S., Erickson J.D. Excitation-transcription coupling via calcium/calmodulin-dependent protein kinase/ERK1/2 signaling mediates the coordinate induction of VGLUT2 and Narp triggered by a prolonged increase in glutamatergic synaptic activity. J. Biol. Chem. 2010;285(19):14366-14376.
13. Durieux P.F., Schiffmann S.N., de Kerchove d’Exaerde A. Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions. EMBO J. 2012;31(3):640-653.
14. Etholm L., Heggelund P. Seizure elements and seizure element transitions during tonic–clonic seizure activity in the synapsin I/II double knockout mouse: a neuroethological description. Epilepsy Behav. 2009;14(4):582-590.
15. Fassio A., Raimondi A., Lignani G., Benfenati F., Baldelli P. Synapsins: from synapse to network hyperexcitability and epilepsy. Seminars in cell developmental biology. Elsevier. 2011;22:408-415.
16. Floran B., Aceves J., Sierra A., Martinez-Fong D. Activation of D1 dopamine receptors stimulates the release of GABA in the basal ganglia of the rat. Neurosci. Lett. 1990;116(1):136-140.
17. Garcia C., Blair H., Seager M., Coulthard A., Tennant S., Buddles M., Curtis A., Goodship J. Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy. J. Med. Genet. 2004;41(3):183-186.
18. Gerfen C.R., Engber T.M., Mahan L.C., Susel Z., Chase T.N., Monsma F., Sibley D.R. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990; 250(4986):1429-1432.
19. Gerfen C.R., Miyachi S., Paletzki R., Brown P. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J. Neurosci. 2002; 22(12):5042-5054.
20. Girault J.A., Barbeito L., Spampinato U., Gozlan H., Glowinski J., Besson M.J. In vivo release of endogenous amino acids from the rat striatum: further evidence for a role of glutamate and aspartate in corticostriatal neurotransmission. J. Neurochem. 1986;47(1):98-106.
21. Glazova M.V., Nikitina L.S., Hudik K.A., Kirillova O.D., Dorofeeva N.A., Korotkov A.A., Chernigovskaya E.V. Inhibition of ERK1/2 signaling prevents epileptiform behavior in rats prone to audiogenic seizures. J. Neurochem. 2015;132(2):218-229.
22. Graybiel A.M. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 1990;3(7):244-254.
23. Greengard P. The neurobiology of slow synaptic transmission. Science.
24. 2001;294(5544):1024-1030.
25. Guerrero C., Pesce L., Lecuona E., Ridge K.M., Sznajder J.I. Dopamine activates ERKs in alveolar epithelial cells via Ras-PKC-dependent and Grb2/Sos-independent mechanisms. Am. J. Physiol.-Lung Cell Mol. Physiol. 2002;282(5):L1099-L1107.
26. Gurney K., Prescott T.J., Wickens J.R., Redgrave P. Computational models of the basal ganglia: from robots to membranes. Trends Neurosci. 2004;27(8):453-459.
27. Hauser W.A. The prevalence and incidence of convulsive disorders in children. Epilepsia. 1994;35(s2):S1-S6.
28. Haycock J.W., Ahn N.G., Cobb M.H., Krebs E.G. ERK1 and ERK2, two microtubule- associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc. Natl Acad. Sci. 1992;89(6):2365-2369.
29. Kataoka M., Yamamori S., Suzuki E., Watanabe S., Sato T., Miyaoka H., Azuma S., Ikegami S., Kuwahara R., Suzuki-Migishima R., Nakahara Y., Nihonmatsu I., Inokuchi K., Katoh-Fukui Y., Yokoyama M.,Takahashi M. A single amino acid mutation in SNAP-25 induces anxiety-related behavior in mouse. PLoS One. 2011;6(9): e25158.
30. Ketzef M., Kahn J., Weissberg I., Becker A., Friedman A., Gitler D. Compensatory network alterations upon onset of epilepsy in synapsin triple knock-out mice. Neuroscience. 2011;189:108-122.
31. Kotecha S.A., Oak J.N., Jackson M.F., Perez Y., Orser B.A., Van Tol H.H., MacDonald J.F. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron. 2002;35(6):1111-1122.
32. Krushinskij L.V. Formirovanie povedenija zhivotnyh v norme i patologii [Formation of Animal Behavior in Health and Disease]. Moscow, Moscow State University Publ., 1960.
33. Le Moine C., Bloch B. D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J. Comp. Neurol. 1995;355(3):418-426.
34. Lee F.J., Xue S., Pei L., Vukusic B., Chéry N., Wang Y., Wang Y.T., Niznik H.B., Yu X.M., Liu F. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell. 2002;111(2):219-230.
35. Lindgren H.S., Ohlin K.E., Cenci M.A. Differential involvement of D1 and D2 dopamine receptors in L-DOPA-induced angiogenic activity in a rat model of Parkinson’s disease. Neuropsychopharmacology. 2009;34(12):2477-2488.
36. Longuet C., Broca C., Costes S., Hani E.H., Bataille D., Dalle S.P. Extracellularly regulated kinases 1/2 (p44/42 mitogen-activated protein kinases) phosphorylate synapsin I and regulate insulin secretion in the MIN6 β-cell line and islets of Langerhans. Endocrinology. 2005; 146(2):643-654.
37. Lynd-Balta E., Haber S. The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neuroscience. 1994;59(3):625-640.
38. Matveeva E.A., Price D.A., Whiteheart S.W., Vanaman T.C., Gerhardt G.A., Slevin J.T. Reduction of vesicle-associated membrane protein 2 expression leads to a kindling- resistant phenotype in a murine model of epilepsy. Neuroscience. 2012;202:77-86.
39. Murray B., Alessandrini A., Cole A.J., Yee A.G., Furshpan E.J. Inhibition of the p44/42 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity. Proc. Natl Acad. Sci. 1998;95(20):11975-11980.
40. Nateri A.S., Raivich G., Gebhardt C., Da Costa C., Naumann H., Vreugdenhil M., Makwana M., Brandner S., Adams R.H., Jefferys J.G. ERK activation causes epilepsy by stimulating NMDA receptor activity. EMBO J. 2007;26(23):4891-4901.
41. O’Sullivan G.J., Dunleavy M., Hakansson K., Clementi M., Kinsella A., Croke D.T., Drago J., Fienberg A.A., Greengard P., Sibley D.R. Dopamine D1 vs D5 receptor- dependent induction of seizures in relation to DARPP-32, ERK1/2 and GluR1-AMPA signaling. Neuropharmacology. 2008;54(7):1051-1061.
42. Osterweil E.K., Krueger D.D., Reinhold K., Bear M.F. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J. Neurosci. 2010;30(46):15616-15627.
43. Schallier A., Massie A., Loyens E., Moechars D., Drinkenburg W., Michotte Y., Smolders I. vGLUT2 heterozygous mice show more susceptibility to clonic seizures induced by pentylenetetrazol. Neurochem.Int. 2009;55(1):41-44.
44. Scharfman H.E. The neurobiology of epilepsy. Curr. Neurol. Neurosci. 2007;7(4):348- 354.
45. Sebolt-Leopold J.S., Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer. 2004;4(12): 937-947.
46. Semiohina A.F., Fedotova I.B., Poletaeva I.I. Krushinsky – Molodkina rats: study of audiogenic epilepsy, cardiovascular events, and behavior. Zhurnal vysshey nervnoy deyatelnosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2006;56(3):298-316.
47. Sgambato V., Pagès C., Rogard M., Besson M.-J., Caboche J. Extracellular signal- regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J. Neurosci. 1998;18(21): 8814-8825.
48. Shah P., Nankova B.B., Parab S., La Gamma E.F. Short chain fatty acids induce TH gene expression via ERK-dependent phosphorylation of CREB protein. Brain Res. 2006;1107(1):13-23.
49. Valjent E., Corvol J.-C., Pagès C., Besson M.-J., Maldonado R., Caboche J. Involvement of the extracellular signal-regulated kinase cascade for cocaine- rewarding properties. J Neurosci. 2000;20(23): 8701-8709.
50. Vara H., Onofri F., Benfenati F., Sassoè-Pognetto M., Giustetto M. ERK activation in axonal varicosities modulates presynaptic plasticity in the CA3 region of the hippocampus through synapsin I. Proc. Natl Acad. Sci. 2009;106(24):9872-9877.
51. Yamagata Y., Obata K., Greengard P., Czernik A. Increase in synapsin I phosphorylation implicates a presynaptic component in septal kindling. Neuroscience. 1995;64(1):1-4.