Tyrosine hydroxylase of the brain and it’s regulation by glucocorticoids
https://doi.org/10.18699/VJ16.156
Abstract
Early life stress events can produce long-lasting changes in neurochemistry and behaviors related to monoamine systems, with increased risks of cardiovascular, metabolic, neuroendocrine, psychiatric disorders, generalized anxiety and depression in adulthood. Tyrosine hydroxylase (TH), the key enzyme for catecholamine synthesis, also plays an important role in the activity of the noradrenergic system and may be a target for glucocorticoids during the perinatal programming of physiological functions and behavior. Administration of hydrocortisone or dexamethasone to female rats on day 20 of pregnancy and to 3-day-old neonatal pups significantly increased TH mRNA levels (real-time PCR) and enzyme activity as well as protein levels determined by ICH in the locus coeruleus. Moreover, our treatment led to increase in TH mRNA levels in 25- and 70-day-old animals, as well as an increase in enzyme activity in the brainstem and cerebral cortex of adult rats. The long-term changes in TH expression are limited by the perinatal period of development. Administration of hormones on day 8 of life was not accompanied by changes in TH mRNA levels or enzyme activity. Glucocorticoids use several mechanisms to bring about transactivation or transrepression of genes. The main mechanism includes direct binding of the hormone-activated GRs to glucocorticoid responsive elements (GREs) in the promoter region of genes. However, despite optimistic claims made the classical GRE was not found in the TH gene promoter. Protein – protein interactions between hormone-activated GR and other transcription factors, for example, AP-1, provide an additional mechanism for the effects of glucocorticoids on gene expression. An important feature of this mechanism is its dependence on the composition of proteins formed by AP-1. Hormone-activated GRs are able to enhance gene expression when AP-1 consists of the Jun / Jun homodimer, but do not do that when AP-1 appears as the Jun / Fos heterodimer. Furthermore, as has been shown recently, the GRE / AP-1 composite site is the major site of interaction of glucocorticoids with the TH gene in the pheochromocytoma cell line. Ontogenetic variation in the expression of Fos and Jun family proteins, which affects their ratio, can be one of the reasons for the TH gene regulation by glucocorticoids at near-term fetuses and neonates. However, to date this hypothesis has been supported only by in vitro data, and the existence of this mechanism in in vivo conditions needs to be explored in further studies.
About the Authors
E. V. SukharevaRussian Federation
T. S. Kalinina
Russian Federation
V. V. Bulygina
Russian Federation
N. N. Dygalo
Russian Federation
References
1. Altmann C.R., Brivanlou A.H. Neural patterning in the vertebrate embryo. Int. Rev. Cytol. 2001;203:447482.
2. Bademci G., Vance J.M., Wang L. Tyrosine hydroxylase gene: another piece of the genetic puzzle of Parkinson’s disease. CNS Neurol. Disord. Drug Targets. 2012;11(4):469-481.
3. Barker D.J. Fetal origins of coronary heart disease. BMJ. 1995; 311(6998):171-174.
4. Barth K.A., Kishimoto Y., Rohr K.B., Seydler C., Schulte-Merker S., Wilson S.W. Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development. 1999; 126(22):4977-4987.
5. Beck I.M., Vanden Berghe W., Vermeulen L., Yamamoto K.R., Haegeman G., De Bosscher K. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr. Rev. 2009;30(7):830-882. DOI 10.1210/er.2009-0013
6. Bingham B.C., Sheela Rani C.S., Frazer A., Strong R., Morilak D.A. Exogenous prenatal corticosterone exposure mimics the effects of prenatal stress on adult brain stress response systems and fear extinction behavior. Psychoneuroendocrinology. 2013;38(11):2746-2757. DOI 10.1016/j.psyneuen.2013.07.003
7. Bonnin A., de Miguel R., Rodriguez-Manzaneque J.C., Fernandez-Ruiz J.J., Santos A., Ramos J.A. Changes in tyrosine hydroxylase gene expression in mesencephalic catecholaminergic neurons of immature and adult male rats perinatally exposed to cannabinoids. Brain Res. Develop. Brain Res. 1994;81(1):147-150.
8. Bornstein S.R., Tian H., Haidan A., Böttner A., Hiroi N., Eisenhofer G., McCann S.M., Chrousos G.P., Roffler-Tarlov S. Deletion of tyrosine hydroxylase gene reveals functional interdependence of adrenocortical and chromaffin cell system in vivo. Proc. Natl Acad. Sci. USA. 2000;97(26):14742-14747. DOI 10.1073/pnas.97.26.14742
9. Boschi N.M., Takeuchi K., Sterling C., Tank A.W. Differential expression of polycytosine-binding protein isoforms in adrenal gland, locus coeruleus and midbrain. Neuroscience. 2015;286:1-12. DOI 10.1016/j.neuroscience.2014.11.038
10. Candy J., Collet C. Two tyrosine hydroxylase genes in teleosts. Biochim. Biophys. Acta. 2005;1727(1):35-44.
11. Carson R.P., Robertson D. Genetic manipulation of noradrenergic neurons. J. Pharmacol. Exp. Ther. 2002;301(2):410-417.
12. Champagne D.L., de Kloet E.R., Joels M. Fundamental aspects of the impact of glucocorticoids on the (immature) brain. Semin. Fetal Neonatal Med. 2009;14(3):136-142. DOI 10.1016/j.siny.2008.11.006
13. Craig S.P., Buckle V.J., Lamouroux A., Mallet J., Craig I. Localization of the human tyrosine hydroxylase gene to 11p15: gene duplication and evolution of metabolic pathways. Cytogenet. Cell Genet. 1986;42(1/2):29-32.
14. Dent G.W., Smith M.A., Levine S. Stress-induced alterations in locus coeruleus gene expression during ontogeny. Brain Res. Develop. Brain Res. 2001;127(1):23-30.
15. Diamond M.I., Miner J.N., Yoshinaga S.K., Yamamoto K.R. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science. 1990;249(4974):1266-1272.
16. Dunkley P.R., Bobrovskaya L., Graham M.E., von Nagy-Felsobuki E.I., Dickson P.W. Tyrosine hydroxylase phosphorylation: regulation and consequences. J. Neurochem. 2004;91(5):1025-1043.
17. Dygalo N.N., Kalinina T.S. Effects of genotype-glucocorticoid interaction on the tyrosine hydroxylase activity in the brain of rat fetuses. Genetika = Genetics (Moscow). 1993;29(9):1453-1459.
18. Dygalo N.N., Kalinina T.S., Shishkina G.T. Neonatal programming of rat behavior by downregulation of alpha2A-adrenoreceptor gene expression in the brain. Ann. N.Y. Acad. Sci. 2008;1148:409-414. DOI 10.1196/annals.1410.063
19. Fossom L.H., Sterling C.R., Tank A.W. Regulation of tyrosine hydroxylase gene transcription rate and tyrosine hydroxylase mRNA stability by cyclic AMP and glucocorticoid. Mol. Pharmacol. 1992; 42(5):898-908.
20. Friggi-Grelin F., Coulom H., Meller M., Gomez D., Hirsh J., Birman S. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J. Neurobiol. 2003; 54(4):618-627. DOI 10.1002/neu.10185
21. Fujinaga M., Scott J.C. Gene expression of catecholamine synthesizing enzymes and beta adrenoceptor subtypes during rat embryogenesis. Neurosci. Lett. 1997;231(2):108-112.
22. Fung B.P., Yoon S.O., Chikaraishi D.M. Sequences that direct rat tyrosine- hydroxylase gene-expression. J. Neurochem. 1992;58(6): 2044-2052.
23. Gallo L.A., Tran M., Moritz K.M., Wlodek M.E. Developmental programming: Variations in early growth and adult disease. Clin. Exp. Pharmacol. Physiol. 2013;40(11):795-802. DOI 10.1111/1440-1681.12092
24. Goridis C., Rohrer H. Specification of catecholaminergic and serotonergic neurons. Nat. Rev. Neurosci. 2002;3(7):531-541. DOI 10.1038/nrn871
25. Groeneweg F.L., Karst H., de Kloet E.R., Joels M. Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol. Cell. Endocrinol. 2012;350(2):299-309. DOI 10.1016/j.mce.2011.06.020
26. Guo S., Brush J., Teraoka H., Goddard A., Wilson S.W., Mullins M.C., Rosenthal A. Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein Soulless/ Phox2a. Neuron. 1999;24(3):555-566.
27. Hagerty T., Morgan W.W., Elango N., Strong R. Identification of a glucocorticoid-responsive element in the promoter region of the mouse tyrosine hydroxylase gene. J. Neurochem. 2001;76(3):825-834.
28. Harris A., Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm. Behav. 2011;59(3):279-289. DOI 10.1016/j.yhbeh.2010.06.007
29. Haycock J.W. Species differences in the expression of multiple tyrosine hydroxylase protein isoforms. J. Neurochem. 2002;81(5):947-953.
30. Hebert M.A., Serova L.I., Sabban E.L. Single and repeated immobilization stress differentially trigger induction and phosphorylation of several transcription factors and mitogen-activated protein kinases in the rat locus coeruleus. J. Neurochem. 2005;95(2):484-498.
31. Herlenius E., Lagercrantz H. Development of neurotransmitter systems during critical periods. Exp. Neurol. 2004;190:8-21. DOI 10.1016/j.expneurol.2004.03.027
32. Hernandez-Sanchez C., Bartulos O., Valenciano A.I., Mansilla A., de Pablo F. The regulated expression of chimeric tyrosine hydroxylaseinsulin transcripts during early development. Nucl. Acids. 2006; 34(12):3455-3464.
33. Hippenmeyer S., Kramer I., Arber S. Control of neuronal phenotype: what targets tell the cell bodies. Trends Neurosci. 2004;27(8):482- 488. DOI 10.1016/j.tins.2004.05.012
34. Hirsch M.R., Tiveron M.C., Guillemot F., Brunet J.F., Goridis C. Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development. 1998;125(4):599-608.
35. Holm P.C., Rodriguez F.J., Kele J., Castelo-Branco G., Kitajewski J., Arenas E. BMPs, FGF8 and Wnts regulate the differentiation of locus coeruleus noradrenergic neuronal precursors. J. Neurochem. 2006;99(1):343-352. DOI 10.1111/j.1471-4159.2006.04039.x
36. Kalinina T.S., Dygalo N.N. Development of the noradrenergic system of the rat brain after prenatal exposure to corticosterone. Izvestiya Rossiiskoi Akademii Nauk – Seriya Biologicheskaya = Biology Bulletin of the Russian Academy of Science. 2013;4:447-452. DOI 10.7868/S0002332913040048
37. Kalinina T.S., Shishkina G.T., Dygalo N.N. Induction of tyrosine hydroxylase gene expression by glucocorticoids in the perinatal rat brain is age-dependent. Neurochem. Res. 2012;37(4):811-818.
38. Kapoor A., Petropoulos S., Matthews S.G. Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Res. Rev. 2008;57(2):586-595. DOI 10.1016/j.brainresrev.2007.06.013
39. Kassel O., Herrlich P. Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol. Cell. Endocrinol. 2007;275(1/2):13- 29.
40. Kobayashi K., Morita S., Sawada H., Mizuguchi T., Yamada K., Nagatsu I., Hata T., Watanabe Y., Fujita K., Nagatsu T. Targeted disruption of the tyrosine-hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. J. Biol. Chem. 1995; 270(45):27235-27243.
41. Kreider M.L., Tate C.A., Cousins M.M., Oliver C.A., Seidler F.J., Slotkin T.A. Lasting effects of developmental dexamethasone treatment on neural cell number and size, synaptic activity, and cell signaling: critical periods of vulnerability, dose-effect relationships, regional targets, and sex selectivity. Neuropsychopharmacology. 2006;31(1): 12-35. DOI 10.1038/sj.npp.1300783
42. Kumer S.C., Vrana K.E. Intricate regulation of tyrosine hydroxylase activity and gene expression. J. Neurochem. 1996;67(2):443-462.
43. Kvetnansky R., Sabban E.L., Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol. Rev. 2009;89(2):535-606.
44. Langlais D., Couture C., Balsalobre A., Drouin J. The Stat3/GR interaction code: predictive value of direct/indirect DNA recruitment for transcription outcome. Mol. Cell. 2012;47(1):38-49. DOI 10.1016/j.molcel.2012.04.021
45. Lenartowski R., Goc A. Epigenetic, transcriptional and posttranscriptional regulation of the tyrosine hydroxylase gene. Int. J. Dev. Neurosci. 2011;29(8):873- 883.
46. Lewis E.J., Tank A.W., Weiner N., Chikaraishi D.M. Regulation of tyrosine hydroxylase mRNA by glucocorticoid and cyclic AMP in a rat pheochromocytoma cell line. Isolation of a cDNA clone for tyrosine hydroxylase mRNA. J. Biol. Chem. 1983;258(23):14632-14637.
47. Liberman A.C., Refojo D., Druker J., Toscano M., Rein T., Holsboer F., Arzt E. The activated glucocorticoid receptor inhibits the transcription factor T-bet by direct protein-protein interaction. FASEB J. 2007;21(4):1177-1188. DOI 10.1096/fj.06- 7452com
48. Lopez-Sanchez C., Bartulos O., Martinez-Campos E., Ganan C., Valenciano A.I., Garcia-Martinez V., De Pablo F., Hernandez-Sanchez C. Tyrosine hydroxylase is expressed during early heart development and is required for cardiac chamber formation. Cardiovasc. Res. 2010;88(1):111-120.
49. Makino S., Smith M.A., Gold P.W. Regulatory role of glucocorticoids and glucocorticoid receptor mRNA levels on tyrosine hydroxylase gene expression in the locus coeruleus during repeated immobilization stress. Brain Res. 2002;943(2):216- 223.
50. Markey K.A., Towle A.C., Sze P.Y. Glucocorticoid influence on tyrosine hydroxylase activity in mouse locus coeruleus during postnatal development. Endocrinology. 1982;111(5):1519-1523. DOI 10.1210/endo-111-5-1519
51. Markham J.A., Koenig J.I. Prenatal stress: role in psychotic and depressive diseases. Psychopharmacology. 2011;214(1):89-106. DOI 10.1007/s00213-010-2035-0
52. Matthews K., Dalley J.W., Matthews C., Tsai T.H., Robbins T.W. Periodic maternal separation of neonatal rats produces region- and gender-specific effects on biogenic amine content in postmortem adult brain. Synapse. 2001;40(1):1-10. DOI 10.1002/10982396 (200104)40:1<1::AID-SYN1020>3.0.CO;2-E
53. McArthur S., McHale E., Gillies G.E. The size and distribution of midbrain dopaminergic populations are permanently altered by perinatal glucocorticoid exposure in a sex- region- and time-specific manner.Neuropsychopharmacology. 2007;32(7):1462-1476. DOI 10.1038/sj.npp.1301277
54. Morin X., Cremer H., Hirsch M.R., Kapur R.P., Goridis C., Brunet J.F. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron. 1997;18(3):411-423.
55. Nagamoto-Combs K., Piech K.M., Best J.A., Sun B., Tank A.W. Tyrosine hydroxylase gene promoter activity is regulated by both cyclic AMP-responsive element and AP1 sites following calcium influx. Evidence for cyclic amp-responsive element binding protein-independent regulation. J. Biol. Chem. 1997;272(9):6051-6058.
56. Nagatsu T., Levitt M., Udenfriend S. Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J. Biol. Chem. 1964;2910-2917.
57. Naumenko E.V., Dygalo N.N. Noradrenergic brain mechanisms and emotional stress in adult rats after prenatal hydrocortisone treatment. Biogenic Amines in Development. Amsterdam: Elsevier/North Holland Biomedical Press, 1980;373-388.
58. Newton R., Holden N.S. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor? Mol. Pharmacol. 2007;72(4):799-809.
59. Oakley R.H., Cidlowski J.A. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J. Allergy Clin. Immun. 2013;132(5):1033-1044. DOI 10.1016/j.jaci.2013.09.007
60. Okada Y., Saika S., Shirai K., Ohnishi Y., Senba E. Expression of AP-1 (c-fos/c-jun) in developing mouse corneal epithelium. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2003;241(4):330-333.
61. Qian Y., Fritzsch B., Shirasawa S., Chen C.L., Choi Y., Ma Q. Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/ Tlx3. Genes Dev. 2001;15(19):2533-2545.
62. Pattyn A., Goridis C., Brunet J.F. Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol. Cell. Neurosci. 2000;15(3):235-243. DOI 10.1006/mcne.1999.0826
63. Paulding W.R., Schnell P.O., Bauer A.L., Striet J.B., Nash J.A., Kuznetsova A.V., Czyzyk-Krzeska M.F. Regulation of gene expression for neurotransmitters during adaptation to hypoxia in oxygensensitive neuroendocrine cells. Microsc. Res. Techniq. 2002;59(3): 178-187. DOI 10.1002/jemt.10192
64. Pennypacker K.R. AP-1 transcription factor complexes in CNS disorders and development. J. Florida Med. Assoc. 1995;82(8):551-554.
65. Pfahl M. Nuclear receptor/AP-1 interaction. Endocr. Rev. 1993;14(5): 651-658.
66. Puymirat J., Faivre-Bauman A., Bizzini B., Tixier-Vidal A. Prenatal and postnatal ontogenesis of neurotransmitter-synthetizing enzymes and [125I]tetanus toxin binding capacity in the mouse hypothalamus. Brain Res. 1982;255(2):199-206.
67. Radcliffe P.M., Sterling C.R., Tank A.W. Induction of tyrosine hydroxylase mRNA by nicotine in rat midbrain is inhibited by mifepristone. J. Neurochem. 2009;109(5):1272-1284. DOI 10.1111/j.1471-4159. 2009.06056.x
68. Raivich G., Behrens A. Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Progr. Neurobiol. 2006;78(6):347-363.
69. Rani C.S., Elango N., Wang S.S., Kobayashi K., Strong R. Identification of an activator protein-1-like sequence as the glucocorticoid response element in the rat tyrosine hydroxylase gene. Mol. Pharmacol. 2009;75(3):589-598.
70. Rani C.S.S., Soto-Pina A., Iacovitti L., Strong R. Evolutionary conservation of an atypical glucocorticoid-responsive element in the human tyrosine hydroxylase gene. J. Neurochem. 2013;126(1):19-28. DOI 10.1111/jnc.12294
71. Reynolds R.M. Programming effects of glucocorticoids. Clin. Obstet. Gynecol. 2013;56(3):602-609. DOI 10.1097/GRF.0b013e31829939f7
72. Rios M., Habecker B., Sasaoka T., Eisenhofer G., Tian H., Landis S., Chikaraishi D., Roffler-Tarlov S. Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase. J. Neurosci. 1999;19(9):3519-3526.
73. Romano G., Suon S., Jin H., Donaldson A.E., Iacovitti L. Characterization of five evolutionary conserved regions of the human tyrosine hydroxylase (TH) promoter: implications for the engineering of a human TH minimal promoter assembled in a self- inactivating lentiviral vector system. J. Cell. Physiol. 2005;204(2):666-677.
74. Sabban E.L., Hebert M.A., Liu X., Nankova B., Serova L. Differential effects of stress on gene transcription factors in catecholaminergic systems. Ann. N.Y. Acad. Sci. 2004;1032:130-140.
75. Sabban E.L., Kvetnansky R. Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends Neurosci. 2001;24(2):91-98.
76. Sapolsky R.M., Romero L.M., Munck A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000;21(1):55-89.
77. Shishkina G.T., Kalinina T.S., Dygalo N.N. Attenuation of alpha2Aadrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood. Neuroscience. 2004a;129(3):521-528. DOI 10.1016/j.neuroscience.2004.08.015
78. Shishkina G.T., Kalinina T.S., Popova N.K., Dygalo N.N. Influence of neonatal short- term reduction in brainstem alpha2A-adrenergic receptors on receptor ontogenesis, acoustic startle reflex, and prepulse inhibition in rats. Behav. Neurosci. 2004b;118(6):1285-1292. DOI 10.1037/0735-7044.118.6.1285
79. Simon H.H., Scholz C., O’Leary D.D. Engrailed genes control developmental fate of serotonergic and noradrenergic neurons in mid- and hindbrain in a gene dose- dependent manner. Mol. Cell. Neurosci. 2005;28(1):96-105. DOI 10.1016/j.mcn.2004.08.016
80. Slotkin T.A., Kreider M.L., Tate C.A., Seidler F.J. Critical prenatal and postnatal periods for persistent effects of dexamethasone on serotonergic and dopaminergic systems. Neuropsychopharmacology. 2006;31(5):904-911. DOI 10.1038/sj.npp.1300892
81. Sukhareva E.V., Dygalo N.N., Kalinina T.S. Influence of dexamethasone on the expression of immediate-early c-fos and c-jun genes in different regions of the neonatal brain. Molekulyarnaya biologiya = Molecular Biology. 2016;50(2):266-271.
82. Sukhareva E.V., Kalinina T.S., Lanshakov D.A., Bulygina V.V., Dygalo N.N. Proteins of the AP1 complex in glucocorticoid induction of brain tyrosine hydroxylase in early ontogenesis. Materialy sedmoy Vserossiyskoy nauchno-prakticheskoy konferentsii «Fundamentalnye aspekty kompensatorno-prisposobitel’ykh protsessov» i Molodezhnogo simpoziuma «Molekulyarno-kletochnye i medikoekologicheskie problemy kompensatsii i prisposobleniya» [Proc. 7th All-Russian Scientific-Practical Conf. “The fundamental aspects of compensatory and adaptive processes” and the Youth Symp. “Molecular and medicoenvironmental problems of compensation and adaptation”]. Novosibirsk, 2015;271-272.
83. Sun B., Chen X., Xu L., Sterling C., Tank A.W. Chronic nicotine treatment leads to induction of tyrosine hydroxylase in locus ceruleus neurons: the role of transcriptional activation. Mol. Pharmacol. 2004;66(4):1011-1021.
84. Tank A.W., Curella P., Ham L. Induction of mRNA for tyrosine hydroxylase by cyclic AMP and glucocorticoids in a rat pheochromocytoma cell line: evidence for the regulation of tyrosine hydroxylase synthesis by multiple mechanisms in cells exposed to elevated levels of both inducing agents. Mol. Pharmacol. 1986;30(5):497-503.
85. Tank A.W., Xu L., Chen X., Radcliffe P., Sterling C.R. Post-transcriptional regulation of tyrosine hydroxylase expression in adrenal medulla and brain. Ann. N.Y. Acad. Sci. 2008;1148:238-248.
86. Tekin I., Roskoski R. Jr., Carkaci-Salli N., Vrana K.E. Complex molecular regulation of tyrosine hydroxylase. J. Neur. Transm. (Vienna). 2014;121(12):1451-1481. DOI 10.1007/s00702-014-1238-7
87. Teurich S., Angel P. The glucocorticoid receptor synergizes with Jun homodimers to activate AP-1-regulated promoters lacking GR binding sites. Chem. Sens. 1995;20(2):251-255.
88. Thomas S.A., Matsumoto A.M., Palmiter R.D. Noradrenaline is essential for mouse fetal development. Nature. 1995;374(6523):643-646.
89. Vogel-Höpker A., Rohrer H. The specification of noradrenergic locus coeruleus (LC) neurones depends on bone morphogenetic proteins (BMPs). Development. 2002;129(4):983-991.
90. Wurst W., Bally-Cuif L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat. Rev. Neurosci. 2001;2(2):99-108. DOI 10.1038/35053516
91. Yamamoto K., Ruuskanen J.O., Wullimann M.F., Vernier P. Two tyrosine hydroxylase genes in vertebrates New dopaminergic territories revealed in the zebrafish brain. Mol. Cell. Neurosci. 2010;43(4):394-402.
92. Zhong S., Quealy J.A., Bode A.M., Nomura M., Kaji A., Ma W.Y., Dong Z. Organ- specific activation of activator protein-1 in transgenic mice by 12-o- tetradecanoylphorbol-13-acetate with different administration methods. Cancer Res. 2001;61(10):4084-4091.
93. Zhou Q.Y., Quaife C.J., Palmiter R.D. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature. 1995;374(6523):640-643.