Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Combining and congruence evaluation of phylogenetic signals from different genes based on geometric approach

https://doi.org/10.18699/VJ16.153

Abstract

A new Euclidean distance based algorithm is used for analysis of congruence and combining molecular genetic data. This approach is called geometric, since Euclidean distance satisfies all metric axioms and the points representing the sequences can be placed in a geometric space without distorting the mutual distances and can be endowed with the coordinates in this space. Geometricness of Euclidean distances allows to apply to molecular data methods of multivariate analysis, which are relevant for intra- and interspecies variability investigating, visualization of possible directions of evolution, combining data and evaluation of the congruence of phylogenetic signals. The algorithm is used for the analysis of more than 1500 nucleotide sequences of two nuclear (apoB, brca1) and two mitochondrial (co1, cytb) genes of 15 Palaearctic and Nearctic shrews species of genus Sorex (Soricidae, Eulipotyphla). All sequences of each gene are represented as a set of points in Euclidean space. Centroids of a set of points belonging to the same species are calculated. The matrix of Euclidean distances between the species centroids is calculated for each gene. Mantel test is applied to estimate pairwise similarity (congruence) of interspecies distances matrices relating to different genes. nDNA genes congruence is equal 0.961, mtDNA – 0.748. All matrices of the interspecies distances are combined into a joint matrix by weighing. Joint genetic space for all species is built by principal coordinate method from the joint matrix. Several variability directions reflecting evolutionary events of different scale are visualized in a joint genetic space. In addition, the joint matrix of interspecies distances is used for building a phylogenetic tree which is consistent with the zoological systematics accepted for today. This confirms the efficiency of our proposed method.

About the Authors

V. M. Efimov
Institute of Cytology and Genetics SB RAS; Novosibirsk State University; Tomsk State University
Russian Federation

Novosibirsk;

Tomsk



V. Yu. Kovaleva
Institute of Systematics and Ecology of Animals SB RAS
Russian Federation
Novosibirsk


Yu. N. Litvinov
Institute of Systematics and Ecology of Animals SB RAS
Russian Federation
Novosibirsk


References

1. Abeysundera M., Kenney T., Field C., Gu H. Combining distance matrices on identical taxon sets for multi-gene analysis with singular value decomposition. PLoS One. 2014;9(4):e94279. DOI 10.1371/journal.pone.0094279.

2. Beaumont M.A., Ibrahim K.M., Boursot P., Bruford M.W. Measuring genetic distance. Molecular tools for screening biodiversity: Plants and Animals (Eds. A. Karp, D.S. Ingram, P.G. Isaac). London: Chapman & Hall, 1998;315-325. DOI 10.1007/978-94-009-0019-6_58.

3. Bininda-Emonds O.R.P., Gittleman J.L., Steel M.A. The (super) tree of life: procedures, problems, and prospects. Annu. Rev. Ecol. Syst. 2002;33:265-289. DOI 10.1146/annurev.ecolsys.33.010802.150511.

4. Brazil M., Graham R.L., Thomas D.A., Zachariasen M. On the history of the euclidean Steiner tree problem. Archive History Exact Sciences. 2014;68:327-354. DOI 10.1007/s00407-013-0127-z.

5. Brazil M., Thomas D.A., Nielsen В.K., Winter Р., Wulff-Nilsen С., Zachariasen М. A novel approach to phylogenetic trees: d-dimensional geometric Steiner trees. Networks. 2009;53(2):104-111.

6. Burleigh J.G., Bansal M.S., Eulenstein O., Hartmann S., Wehe A., Vision T.J. Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. Syst. Biol. 2011;60(2):117-125. DOI 10.1093/sysbio/syq072.

7. Cavalli-Sforza L.L., Edwards A.W. Phylogenetic analysis. Models and estimation procedures. Am. J. Human Genet. 1967;19(3):233-257.

8. Criscuolo A., Berry V., Douzery E.J., Gascuel O. SDM: a fast distance & based approach for (super) tree building in phylogenomics. Syst. Biol. 2006;55(5):740-755. DOI 10.1080/10635150600969872.

9. Criscuolo A., Michel C.J. Phylogenetic inference with weighted codon evolutionary distances. J. Мol. Еvol. 2009;68(4):377-392. DOI 10.1007/s00239-009-9212-y.

10. Dannelid E. The genus Sorex (Mammalia, Soricidae) – distribution and evolutionary aspects of Eurasian species. Mammal Rev. 1991;21(1): 1-20. DOI 10.1111/j.1365-2907.1991.tb00284.x.

11. de Queiroz A., Gatesy J. The supermatrix approach to systematic. Trends Ecol. Evol. 2007;22(1):34-41. DOI /10.1016/j.tree.2006.10.002.

12. Delsuc F., Brinkmann H., Philippe H. Phylogenomics and the reconstruction of the tree of life. Nature Rev. Genet. 2005;6(5):361-375. DOI 10.1038/nrg1603.

13. Deyvison M. Mnogomernoe shkalirovanie [Multidimensional scaling]. Moscow, Finansy i statistika Publ., 1988. (in Russian)

14. Dol’nik A.S., Tamazyan G.S., Pershina E.V., Vyatkina K.V., Porozov Yu.B., Pinaev A.G., Andronov E.E. The evolutionary space of bacterial 16S rRNA gene v. 1.0. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2012;5:111-120. (in Russian)

15. Dubey S., Michaux J., Brünner H., Hutterer R., Vogel P. False phylogenies on wood mice due to cryptic cytochrome-b pseudogene. Mol. Phylogen. Evol. 2009;50(3):633-641. DOI 10.1016/j.ympev.2008.12.008.

16. Efimov V.M., Melchakova M.A., Kovaleva V.Yu. Geometric properties of evolutionary distances. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/1):714-723. (in Russian)

17. Esteva M., Cervantes F.A., Brant S.V., Cook J.A. Molecular phylogeny of long-tailed shrews (genus Sorex) from Mexico and Guatemala. Zootaxa. 2010;2615:47-65.

18. Fonseca R., Brazil M., Winter P., Zachariasen M. Faster exact algorithms for computing Steiner trees in higher dimensional euclidean spaces. 11th DIMACS Implementation challenge on Steiner tree problems. Providence, Rhode Island: Brown Univ., 2014.

19. Fumagalli L., Taberlet P., Stewart D.T., Gielly L., Hausser J., Vogel P. Molecular phylogeny and evolution of Sorex shrews (Soricidae: Insectivora) inferred from mitochondrial DNA sequence data. Mol. Phylogen. Evol. 1999;11(2):222-235. DOI 10.1006/mpev.1998.0568.

20. Gadagkar S.R., Rosenberg M.S., Kumar S. Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J. Experimental Zoology. Pt. B: Molecular and Developmental Evolution. 2005;304B(1):64-74. DOI 10.1002/jez.b. 21026.

21. Gower J.C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1966;53(3/4):325-338. DOI 10.2307/2333639.

22. Gower J.C., Legendre P. Metric and Euclidean properties of dissimilarity coefficients. J. Classification. 1986;3(1):5-48. DOI 10.1007/bf01896809.

23. Grechko V.V. The problems of molecular phylogenetics with the example of squamate reptiles: mitochondrial DNA markers. Molekulyar­naya biologiya = Molecular Biology (Moscow). 2013;47(1):61-82. (in Russian)

24. Grechko V.V., Fedorova L.V., Ryabinin D.M., Ryabinina N.L., Chobanu D.G., Kosushkin S.A., Darevskiy I.S. The use of nuclear DNA molecular markers for studying speciation and systematics as exemplified by the “Lacerta agilis complex” (Sauria: Lacertidae). Molekulyarnaya biologiya = Molecular Biology (Moscow). 2006; 40(1):61-73. (in Russian)

25. Havel T.F., Kuntz I.D., Crippen G.M. The theory and practice of distance geometry. Bull. Mathem. Biol. 1983;45(5):665-720. DOI 10.1007/bf02460044.

26. Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23(2):254-267. DOI 10.1093/molbev/msj030.

27. Ivanitskaya E.Y. Comparative cytogenetics and systematics of Sorex: a cladistic approach. Advances in the biology of shrews (Eds. J.F. Merritt, G.L. Kirkland (Jr.), R.K. Rose). Pittsburgh: Carnegie Museum Nat. History, Spec. Publ. 1994;313-323.

28. Jeffroy O., Brinkmann H., Delsuc F., Philippe H. Phylogenomics: the beginning of incongruence? Trends Gen. 2006;22(4):225-231. DOI 10.1016/j.tig.2006.02.003.

29. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111-120. DOI 10.1007/BF01731581.

30. Kitazoe Y., Kurihara Y., Narita Y., Okuhara Y., Tominaga A., Suzuki T. A new theory of phylogeny inference through construction of multidimensional vector space. Mol. Biol. Evol. 2001;18(5):812-828.

31. Kitazoe Y., Kishino H., Okabayashi T., Watabe T., Nakajima N., Okuhara Y., Kurihara Y. Multidimensional vector space representation for convergent evolution and molecular phylogeny. Mol. Biol. Evol. 2005;22(3):704-715. DOI 10.1093/molbev/msi051.

32. Klingenberg C.P., Ekau W. A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol. J. Linnean Soc. 1996;59(2):143-177. DOI 10.1111/j.1095-8312.1996.tb01459.x.

33. Klingenberg C.P., Gidaszewski N.A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. System. Biol. 2010;59(3):245-261. DOI 10.1093/sysbio/syp106.

34. Kovaleva V.Yu., Abramov S.A., Dupal T.A., Efimov V.M., Litvinov Yu.N. Correspondence analysis and integration of molecular and morphological data in zoological classification. Izvestiya RAN. Seriya biologicheskaya = Bulletin of the RAS. Biological series. 2012;4:404-414. (in Russian)

35. Kovaleva V.Yu., Litvinov Yu.N., Efimov V.M. Shrews (Soricidae, Eulipotyphla) from the Russian Far East and Siberia: Combination and search for congruence of molecular genetic and morphological data. Zoologicheskiy zhurnal = Zoological Journal (Moscow). 2013;92(11): 1383-1398. (in Russian)

36. Kruscal J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 1964;29(1):1-27. DOI 10.1007/BF02289565.

37. Lee S.H., Hwang K.S., Lee H.R., Kim S.S., Lee K.M., Lee C.H., Lee D. Embedding operational taxonomic units in three-dimensional space for evolutionary distance relationship in phylogenetic analysis. Proc. 5th WSEAS Intern. Conf. on Сircuits, Systems, Electronics, Control and Signal Processing. USA. 2006;192-196.

38. Lukashov V.V. Molekulyarnaya evolyutsiya i filogeneticheskiy analiz [Molecular evolution and phylogenic analysis]. Moscow, Binom. Laboratoriya znaniy Publ., 2009. (in Russian)

39. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Research. 1967;27:209-220.

40. Mantel N., Valand R.S. A technique of nonparametric multivariate analysis. Biometrics. 1970;26:547-558. DOI 10.2307/2529108.

41. Nylander J.A.A. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, 2. 2004.

42. Ohdachi S.D., Hasegawa M., Iwasa M.A., Vogel P., Oshida T., Lin L.-K., Abe H. Molecular phylogenetics of soricid shrews (Mammalia) based on mitochondrial cytochrome b gene sequences: with special reference to the Soricinae. J. Zool. 2006;270(1):177-191. DOI 10.1111/j.1469-7998.2006.00125.x.

43. Ohdachi S., Masuda R., Abe H., Adachi J., Dokuchaev N.E., Haukisalmi V., Yoshida M.C. Phylogeny of Eurasian soricine shrews (Insectivora, Mammalia) inferred from the mitochondrial cytochrome b gene sequences. Zool. Science. 1997;14(3):527-532.

44. Pershina E.V., Dolnik A.S., Tamazyan G., Ikonnikova E.V., Vyatkina K.V., Pinaev A.G., Andronov E.E. An evolutionary space for microbial evolution and community structure analysis. Department of Bioengineering and Bioinformatics of M.V. Lomonosov Moscow State Univ. 2011;54(3):40.

45. Philippe H., Delsuc F., Brinkmann H., Lartillot N. Phylogenomics. Ann. Rev. Ecol., Evol., System. 2005;541-562. DOI 10.1146/annurev.ecolsys.35.112202.130205.

46. Planet P.J. Tree disagreement: measuring and testing incongruence in phylogenies. J. Biomed. Inform. 2006;39(1):86-102. DOI 10.1016/j.jbi.2005.08.008.

47. Polly P.D., Lawing A.M., Fabre A.C., Goswami A. Phylogenetic principal components analysis and geometric morphometrics. Hystrix, Italian J. Mammal. 2013;24(1):33-41. DOI 10.4404/hystrix-24.1-6383.

48. Polunin D.A., Shtayger I.A., Efimov V.M. Development of the JACOBI 4 package for multidimensional analysis of microarray data. Vestnik NGU. Ser. Informatsionnye tekhnologii = Novosibirsk State University Journal of Information Technologies. 2014;12(2):90-98. (in Russian)

49. Scippa G.S., Trupiano D., Rocco M., Viscosi V., Di Michele M., D’Andrea A., Chiatante D. An integrated approach to the characterization of two autochthonous lentil (Lens culinaris) landraces of Molise (south-central Italy). Heredity. 2008;101(2):136-144. DOI 10.1038/hdy.2008.39.

50. Torgerson W.S. Multidimensional scaling: I. Theory and method. Psychometrika. 1952;17(4):401-419. DOI 10.1007/BF02288916.

51. Wilson D.E., Reeder D.A.M. (Ed.). Mammal species of the world: a taxonomic and geographic reference. Baltimore: JHU Press, 2005;12:2142 p.

52. Wortley A.H., Scotland R.W. The effect of combining molecular and morphological data in published phylogenetic analyses. Syst. Biol. 2006;55(4):677-685. DOI 10.1080/10635150600899798.


Review

Views: 752


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)