1. Abeysundera M., Kenney T., Field C., Gu H. Combining distance matrices on identical taxon sets for multi-gene analysis with singular value decomposition. PLoS One. 2014;9(4):e94279. https://doi.org/10.1371/journal.pone.0094279.
2. Beaumont M.A., Ibrahim K.M., Boursot P., Bruford M.W. Measuring genetic distance. Molecular tools for screening biodiversity: Plants and Animals (Eds. A. Karp, D.S. Ingram, P.G. Isaac). London: Chapman & Hall, 1998;315-325. https://doi.org/10.1007/978-94-009-0019-6_58.
3. Bininda-Emonds O.R.P., Gittleman J.L., Steel M.A. The (super) tree of life: procedures, problems, and prospects. Annu. Rev. Ecol. Syst. 2002;33:265-289. https://doi.org/10.1146/annurev.ecolsys.33.010802.150511.
4. Brazil M., Graham R.L., Thomas D.A., Zachariasen M. On the history of the euclidean Steiner tree problem. Archive History Exact Sciences. 2014;68:327-354. https://doi.org/10.1007/s00407-013-0127-z.
5. Brazil M., Thomas D.A., Nielsen V.K., Winter R., Wulff-Nilsen S., Zachariasen M. A novel approach to phylogenetic trees: d-dimensional geometric Steiner trees. Networks. 2009;53(2):104-111.
6. Burleigh J.G., Bansal M.S., Eulenstein O., Hartmann S., Wehe A., Vision T.J. Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. Syst. Biol. 2011;60(2):117-125. https://doi.org/10.1093/sysbio/syq072.
7. Cavalli-Sforza L.L., Edwards A.W. Phylogenetic analysis. Models and estimation procedures. Am. J. Human Genet. 1967;19(3):233-257.
8. Criscuolo A., Berry V., Douzery E.J., Gascuel O. SDM: a fast distance & based approach for (super) tree building in phylogenomics. Syst. Biol. 2006;55(5):740-755. https://doi.org/10.1080/10635150600969872.
9. Criscuolo A., Michel C.J. Phylogenetic inference with weighted codon evolutionary distances. J. Mol. Evol. 2009;68(4):377-392. https://doi.org/10.1007/s00239-009-9212-y.
10. Dannelid E. The genus Sorex (Mammalia, Soricidae) - distribution and evolutionary aspects of Eurasian species. Mammal Rev. 1991;21(1): 1-20. https://doi.org/10.1111/j.1365-2907.1991.tb00284.x.
11. de Queiroz A., Gatesy J. The supermatrix approach to systematic. Trends Ecol. Evol. 2007;22(1):34-41. https://doi.org//10.1016/j.tree.2006.10.002.
12. Delsuc F., Brinkmann H., Philippe H. Phylogenomics and the reconstruction of the tree of life. Nature Rev. Genet. 2005;6(5):361-375. https://doi.org/10.1038/nrg1603.
13. Deyvison M. Mnogomernoe shkalirovanie [Multidimensional scaling]. Moscow, Finansy i statistika Publ., 1988. (in Russian)
14. Dol’nik A.S., Tamazyan G.S., Pershina E.V., Vyatkina K.V., Porozov Yu.B., Pinaev A.G., Andronov E.E. The evolutionary space of bacterial 16S rRNA gene v. 1.0. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2012;5:111-120. (in Russian)
15. Dubey S., Michaux J., Brünner H., Hutterer R., Vogel P. False phylogenies on wood mice due to cryptic cytochrome-b pseudogene. Mol. Phylogen. Evol. 2009;50(3):633-641. https://doi.org/10.1016/j.ympev.2008.12.008.
16. Efimov V.M., Melchakova M.A., Kovaleva V.Yu. Geometric properties of evolutionary distances. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/1):714-723. (in Russian)
17. Esteva M., Cervantes F.A., Brant S.V., Cook J.A. Molecular phylogeny of long-tailed shrews (genus Sorex) from Mexico and Guatemala. Zootaxa. 2010;2615:47-65.
18. Fonseca R., Brazil M., Winter P., Zachariasen M. Faster exact algorithms for computing Steiner trees in higher dimensional euclidean spaces. 11th DIMACS Implementation challenge on Steiner tree problems. Providence, Rhode Island: Brown Univ., 2014.
19. Fumagalli L., Taberlet P., Stewart D.T., Gielly L., Hausser J., Vogel P. Molecular phylogeny and evolution of Sorex shrews (Soricidae: Insectivora) inferred from mitochondrial DNA sequence data. Mol. Phylogen. Evol. 1999;11(2):222-235. https://doi.org/10.1006/mpev.1998.0568.
20. Gadagkar S.R., Rosenberg M.S., Kumar S. Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J. Experimental Zoology. Pt. B: Molecular and Developmental Evolution. 2005;304B(1):64-74. https://doi.org/10.1002/jez.b. 21026.
21. Gower J.C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1966;53(3/4):325-338. https://doi.org/10.2307/2333639.
22. Gower J.C., Legendre P. Metric and Euclidean properties of dissimilarity coefficients. J. Classification. 1986;3(1):5-48. https://doi.org/10.1007/bf01896809.
23. Grechko V.V. The problems of molecular phylogenetics with the example of squamate reptiles: mitochondrial DNA markers. Molekulyarnaya biologiya = Molecular Biology (Moscow). 2013;47(1):61-82. (in Russian)
24. Grechko V.V., Fedorova L.V., Ryabinin D.M., Ryabinina N.L., Chobanu D.G., Kosushkin S.A., Darevskiy I.S. The use of nuclear DNA molecular markers for studying speciation and systematics as exemplified by the “Lacerta agilis complex” (Sauria: Lacertidae). Molekulyarnaya biologiya = Molecular Biology (Moscow). 2006; 40(1):61-73. (in Russian)
25. Havel T.F., Kuntz I.D., Crippen G.M. The theory and practice of distance geometry. Bull. Mathem. Biol. 1983;45(5):665-720. https://doi.org/10.1007/bf02460044.
26. Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23(2):254-267. https://doi.org/10.1093/molbev/msj030.
27. Ivanitskaya E.Y. Comparative cytogenetics and systematics of Sorex: a cladistic approach. Advances in the biology of shrews (Eds. J.F. Merritt, G.L. Kirkland (Jr.), R.K. Rose). Pittsburgh: Carnegie Museum Nat. History, Spec. Publ. 1994;313-323.
28. Jeffroy O., Brinkmann H., Delsuc F., Philippe H. Phylogenomics: the beginning of incongruence? Trends Gen. 2006;22(4):225-231. https://doi.org/10.1016/j.tig.2006.02.003.
29. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111-120. https://doi.org/10.1007/BF01731581.
30. Kitazoe Y., Kurihara Y., Narita Y., Okuhara Y., Tominaga A., Suzuki T. A new theory of phylogeny inference through construction of multidimensional vector space. Mol. Biol. Evol. 2001;18(5):812-828.
31. Kitazoe Y., Kishino H., Okabayashi T., Watabe T., Nakajima N., Okuhara Y., Kurihara Y. Multidimensional vector space representation for convergent evolution and molecular phylogeny. Mol. Biol. Evol. 2005;22(3):704-715. https://doi.org/10.1093/molbev/msi051.
32. Klingenberg C.P., Ekau W. A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol. J. Linnean Soc. 1996;59(2):143-177. https://doi.org/10.1111/j.1095-8312.1996.tb01459.x.
33. Klingenberg C.P., Gidaszewski N.A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. System. Biol. 2010;59(3):245-261. https://doi.org/10.1093/sysbio/syp106.
34. Kovaleva V.Yu., Abramov S.A., Dupal T.A., Efimov V.M., Litvinov Yu.N. Correspondence analysis and integration of molecular and morphological data in zoological classification. Izvestiya RAN. Seriya biologicheskaya = Bulletin of the RAS. Biological series. 2012;4:404-414. (in Russian)
35. Kovaleva V.Yu., Litvinov Yu.N., Efimov V.M. Shrews (Soricidae, Eulipotyphla) from the Russian Far East and Siberia: Combination and search for congruence of molecular genetic and morphological data. Zoologicheskiy zhurnal = Zoological Journal (Moscow). 2013;92(11): 1383-1398. (in Russian)
36. Kruscal J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 1964;29(1):1-27. https://doi.org/10.1007/BF02289565.
37. Lee S.H., Hwang K.S., Lee H.R., Kim S.S., Lee K.M., Lee C.H., Lee D. Embedding operational taxonomic units in three-dimensional space for evolutionary distance relationship in phylogenetic analysis. Proc. 5th WSEAS Intern. Conf. on Sircuits, Systems, Electronics, Control and Signal Processing. USA. 2006;192-196.
38. Lukashov V.V. Molekulyarnaya evolyutsiya i filogeneticheskiy analiz [Molecular evolution and phylogenic analysis]. Moscow, Binom. Laboratoriya znaniy Publ., 2009. (in Russian)
39. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Research. 1967;27:209-220.
40. Mantel N., Valand R.S. A technique of nonparametric multivariate analysis. Biometrics. 1970;26:547-558. https://doi.org/10.2307/2529108.
41. Nylander J.A.A. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, 2. 2004.
42. Ohdachi S.D., Hasegawa M., Iwasa M.A., Vogel P., Oshida T., Lin L.-K., Abe H. Molecular phylogenetics of soricid shrews (Mammalia) based on mitochondrial cytochrome b gene sequences: with special reference to the Soricinae. J. Zool. 2006;270(1):177-191. https://doi.org/10.1111/j.1469-7998.2006.00125.x.
43. Ohdachi S., Masuda R., Abe H., Adachi J., Dokuchaev N.E., Haukisalmi V., Yoshida M.C. Phylogeny of Eurasian soricine shrews (Insectivora, Mammalia) inferred from the mitochondrial cytochrome b gene sequences. Zool. Science. 1997;14(3):527-532.
44. Pershina E.V., Dolnik A.S., Tamazyan G., Ikonnikova E.V., Vyatkina K.V., Pinaev A.G., Andronov E.E. An evolutionary space for microbial evolution and community structure analysis. Department of Bioengineering and Bioinformatics of M.V. Lomonosov Moscow State Univ. 2011;54(3):40.
45. Philippe H., Delsuc F., Brinkmann H., Lartillot N. Phylogenomics. Ann. Rev. Ecol., Evol., System. 2005;541-562. https://doi.org/10.1146/annurev.ecolsys.35.112202.130205.
46. Planet P.J. Tree disagreement: measuring and testing incongruence in phylogenies. J. Biomed. Inform. 2006;39(1):86-102. https://doi.org/10.1016/j.jbi.2005.08.008.
47. Polly P.D., Lawing A.M., Fabre A.C., Goswami A. Phylogenetic principal components analysis and geometric morphometrics. Hystrix, Italian J. Mammal. 2013;24(1):33-41. https://doi.org/10.4404/hystrix-24.1-6383.
48. Polunin D.A., Shtayger I.A., Efimov V.M. Development of the JACOBI 4 package for multidimensional analysis of microarray data. Vestnik NGU. Ser. Informatsionnye tekhnologii = Novosibirsk State University Journal of Information Technologies. 2014;12(2):90-98. (in Russian)
49. Scippa G.S., Trupiano D., Rocco M., Viscosi V., Di Michele M., D’Andrea A., Chiatante D. An integrated approach to the characterization of two autochthonous lentil (Lens culinaris) landraces of Molise (south-central Italy). Heredity. 2008;101(2):136-144. https://doi.org/10.1038/hdy.2008.39.
50. Torgerson W.S. Multidimensional scaling: I. Theory and method. Psychometrika. 1952;17(4):401-419. https://doi.org/10.1007/BF02288916.
51. Wilson D.E., Reeder D.A.M. (Ed.). Mammal species of the world: a taxonomic and geographic reference. Baltimore: JHU Press, 2005;12:2142 p.
52. Wortley A.H., Scotland R.W. The effect of combining molecular and morphological data in published phylogenetic analyses. Syst. Biol. 2006;55(4):677-685. https://doi.org/10.1080/10635150600899798.