Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The genetic diversity of reed canarygrass (Phalaris arundinaceae L.) assessed by isozyme markers

https://doi.org/10.18699/VJ16.106

Abstract

The reed canarygrass (Phalaris arundinacea L.) is a wild-growing rhizomatous perennial cereal plant. This is a valuable forage and decorative crop, widely spread over all the continents except for Antarctic. So far, the reed canarygrass has become rather demanded in many European countries as a source of bioenergy. Among the major advantages of the reed canarygrass are high biomass yield, ecological stability, tolerance, and high seed production. Similar to most of wild-growing plants, the reed canarygrass is poorly studied. In the current study, the genetic diversity of a reed canarygrass collection (42 populations collected in meadow biocenoses of several regions in Russia and some other countries) was investigated using isozyme markers IDH (isocitrate dehydrogenase), GDH (glutamate dehydrogenase), MDH (malate dehydrogenase), ME (malic enzyme), and SKDH (shikimate dehydrogenase). Genetic control of these enzymes was determined in reed canarygrass for the first time. IDH and ME are controlled each by one locus (Idh and Me, respectively), SKDH and GDH have digenic control (loci Skdh1 and -2; Gdh1 and -2, respectively), MDH is controlled by 3 loci (Mdh1, -2 and -3). A number of alleles per locus varied from 1 to 3. High activities in different organs and tissues, as well as codominant inheritance make isozymes convenient genetic markers in various studies into ecological and population genetics, especially in plant species, like reed canarygrass, with unsequenced genome. Cluster analysis based on isozyme data distinguished 22 diverse groups. The degree of genetic similarity was not related with geographical origin of the material.

About the Authors

R. S. Yudina
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk


E. K. Khlestkina
Institute of Cytology and Genetics SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Adams W.T., Joly R.J. Genetics of allozyme variants in loblolly pine. J. Heredity. 1980a;71:33-40.

2. Adams W.T., Joly R.J. Linkage relationships among twelve allozyme loci in loblolly pine. J. Heredity. 1980b;71:199-202.

3. Arulsekar S., Parfitt D., Beres W., Hansche P.E. Genetics of malate dehydrogenase isozymes in the peach. J. Heredity.1986;77:49-51.

4. Arus O., Orton T.J. Inheritance patterns and linkage relationships of eight genes of celery (Apium graveolens L.). J. Heredity. 1984;75: 11-14.

5. Benito C., Salinas J. The chromosomal location of malate dehydrogenase isozymes in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet.1983;64:255-258.

6. Börner A., Khlestkina E.K., Chebotar S., Nagel M., Arif M.A.R., Neumann K., Kobiljski B., Lohwasser U., Röder M.S. Molecular markers in management of ex situ PGR – A case study J. Biosci. 2012; 37:871-877.

7. Brown A.H.D., Munday J. Population genetics structure and optimal sampling of land races of barley. Genetica. 1982;40:315-324.

8. Dice L.R. Measures of the amount of ecologic association between species. Ecology. 1945;26:297-302.

9. Dubrovskis V., Adamovics A., Plüme I. Biogas production from reed canary grass and silage of mixed oats and barley. Proc. 8th Intern. Sci. Conf. Engineering for rural development Jelgava, Latvia, 2009: 243-246.

10. Endo T., Morishima H. Rice. Isozymes in plant genetics an breeding. Amsterdam. Elsevier.1983;B:129-146.

11. Goodman M.M., Stuber C.W. Genetic identification of lines and crosses using isoenzyme electrophoresis. Proceedings of 35th annual corn and sorghum industry research conference, (Am. Seed Trade Association). 1980:10-31.

12. Goodman M.M., Stuber C.W., Lee C.N., Johnson F.M, Genetic control of malate dehydrogenase isozymes in maize. Genetics. 1980;94: 153-168.

13. Goodman M.M., Stuber C.W. Maize. In: Isozymes in plant genetics and breeding. Amsterdam. Elsevier.1983;B:1-33.

14. Harry D.E. Identification of a locus modifying the electrophoretic mobility of malate dehydrogenase isozymes in incense-cedar (Calocedrus decurrens), and its implications for population studies. Biochem. Genet. 1983;21:417-434.

15. Kacprzak A., Matyka M., Krzystek L., Ledakowicz S. Evaluation of biogas collection from reed canary grass, depending on nitrogen fertilization levels. Chem. Proc. Eng. 2012;3:698-701.

16. Kandel T.P., Gislum R., Jørgensen U., Lærke P.E. Prediction of biogas yield and its kinetics in reed canary grass near infrared reflectance spectroscopy and chemometrics. Bioresour. Technol. 2013;146:282-287.

17. Khlestkina E.K., Huang X., Quenun S.Y.B., Chebotar S., Röder M.S., Börner A. Genetic diversity in cultivated plants – loss or stability. Theor. Appl. Genet. 2004a;108:1466-1472.

18. Khlestkina E.K., Röder M.S., Efremova T.T., Börner A., Shumny V.K. The genetic diversity of old and modern Siberian varieties of common spring wheat determined by microsatellite markers. Plant Breed. 2004b;123:122-127.

19. Koebner R.M.D., Shepherd K.W. Shikimate dehydrogenase – a biochemical marker for group 5 chromosomes in Triticinae. Genet. Res. Camb. 1982.;41:209-213.

20. Koren O.G., Yatsunskaya M.S., Nakonechnaya O.V. Low level of allozyme polymorphism in relict aquatic plants of the Far East Nelumbo komarovii Grossh. and Euryale ferox Salisb. Russ. J. Genet. 2012;48:912-919.

21. Kutlunina N.A., Belyaev A.Yu. Genetic diversity and clonal structure in the populations of two closely related species of tulip in the South Urals. Vestnik OGU. 2008;81:93-98.

22. Larionova A.Ya., Yakhneva N.V., Abaimov A.P. Genetic diversity and differentiation of gmelin larch Larix gmelinii populations from Evenkia (Central Siberia). Russ. J. Genet. 2004;40:1127-1133.

23. Levites E.V. Genetics of plant isozymes. Novosibirsk.: Nauka, 1986.

24. Levites E.V., Yudina R.S., Maletsky S.I. Genetic control of NADdependent malate dehydrogenase of sugar beet (Beta vulgaris L.). Dokl. Akad. Nauk SSSR. 1980;255:989- 991.

25. McMillin D.E., Scandalios J.G. Genetic analysis of the two groups of duplicated genes coding for mitochondrial malate dehydrogenase in Zea mays: Possible origin of mMdh genes by chromosome segment duplication. Mol. Gen. Genet. 1981;182:211-221.

26. McMillin D.E., Scandalios J.G. Genetic, imunnological and gene dosage studies of mitochondrial and cytosolic MDH variant in maize. J. Heredity. 1982;73:177-182.

27. Mitra R., Bhatia C.R. Isoenzymes and polyploidy. I. Qualitative and quantative isoenzyme studies in the Triticinae. Genet. Res. Camb. 1971;18:57-69.

28. Mullagulov R.Yu., Redkina N.N., Yanbaev Yu.A. Allozyme variability of English oak Quercus robur L. (Fagaceae) in isolated populations on the eastern boundary of the range. Vestnik OGU. 2008;81: 107-110.

29. Newton K.J. Genetics of mitochondrial isozymes. In: Isozymes in plant genetics and breeding. Amsterdam. Elsevier. 1983;A:157-170.

30. Newton K.J., Schwartz D. Genetics basis of the major malate dehydrogenase in maize. Genetics. 1980;95:425-442.

31. Rohlf F.J. NTSYS-pc: Numerical taxonomy and multivariate analysis system. vers. 2.0, Applied Biostatistics Inc., New York, 1998.

32. Sikdar B., Bhattacharya M., Mukherjee A., Banerjee A., Ghosh E., Ghosh B., Roy S.C. Genetic diversity in important members of Cucurbitaceae using isozyme, RAPD and ISSR markers Biologia Plantarum. 2010;54:135-140.

33. Siva R., Kunal Kumar, Rajasekaran C. Genetic diversity study of important Indian rice genotypes using biochemical and molecular markers. African J. Biotech. 2013;12:1004-1009.

34. Sokal R., Michener C. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 1958;38:1409-1438.

35. Suchorzhevskaya T.B. Study the genetic control of glutamate dehydrogenase in maize (Zea mays L.). Russ. J. Genet. 1980;16:914-917.

36. Tahir M.H.N., Casler M.D., Moore K.J., Brummer E.C. Biomass yield and quality of reed canarygrass under five harvest management system for bioenergy production. Bioenerg. Res. 2001;4:111-119.

37. Tarasova R.S., Levites E.V., Maletsky S.I. Isozyme as markers for identification of sugar beet inbred lines in the process of their development, Biochemical identification of varieties. Proc. III Intern. Symp. ISTA, 1987, Leningrad, USSR. 1988:240-243.

38. Van De Wouw M., Kik C., Van Hintum T., Van Treuren R., Visser B. Genetic erosion in crops: Concept, research results and challenges. Plant Genet. Resour.: Characterisation and Utilisation. 2010;8:1-15.

39. Wijsman N.J.W. Petunia. Isozymes in plant genetics and breeding. Amsterdam: Elsevier.1983;B:229-252.

40. Wrobel C., Coulman B.E., Smith D.L. The potential use of reed canarygrass (Phalaris arundinaceae L.) as a biofuel crop. Acta Agric. Scandi., Section B – Soil & Plant Science. 2008;59:1-18.

41. Yudina R.S., Levites E.V. Malate dehydrogenase isozymes as markers of organelles physiological state sugar beet (Beta vulgaris L.). Sugar Tech. 2007;9:67-71.

42. Yudina R.S., Zheleznova N.B., Zaharova O.V., Zhelesnov A.V., Shumny V.K. Isozyme analysis in a genetic collection of amaranths (Amaranthus L.). Russ. J. Genet. 2005;41:1395-1400.

43. Zoro B.I., Maquet A., Wathelet B., Baudoin J.-P. Genetic control of isozymes in the рrimary gene pool Phaseolus lunatus L. Biotechnol. Agron. Soc. Environ. 1999;3:10-27.


Review

Views: 688


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)