Preview

Vavilov Journal of Genetics and Breeding

Advanced search

INFORMATION SUPPORT OF RESEARCH ON TRANSCRIPTIONAL REGULATORY MECHANISMS: AN ONTOLOGICAL APPROACH

Abstract

By now, a huge body of experimental data on gene transcription regulation has been accumulated. Transcription is controlled by a great number of proteins acting at various steps of the process; thus, a diversity of regulatory mechanisms can be realized. This paper presents approaches to building knowledge domain ontology, formalized description of the mechanisms of transcriptional regulation and the development of methods for integration of heterogeneous information on the features of the regulation of gene expression on this base. The pilot version of the knowledge base on the transcriptional regulation of eukaryotic genes includes: (1) description of basic terms related to transcription regulation and relationships between them; (2) hierarchical classification of transcription regulators; (3) classification of phases and steps of transcription; (4) a database of transcriptional regulators of three mammalian species (human, mouse, and rat); and (5) dictionaries for molecular processes involved in transcriptional regulation. The knowledge base is designed for information support of computer analysis of transcriptional regulatory mechanisms. Approaches to reconstruction of eukaryotic transcriptional regulatory mechanisms with the new knowledge base are presented.

About the Authors

N. L. Podkolodnyy
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk, Russia
Russian Federation


E. V. Ignatieva
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


O. A. Podkolodnaya
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


N. A. Kolchanov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia National Research Centre «Kurchatov Institute», Moscow, Russia
Russian Federation


References

1. Подколодный Н.Л. Онтологическое моделирование в биоинформатике и системной биологии // Онтологическое моделирование. ИПИ РАН, 2011. С. 233–269.

2. Подколодный Н.Л., Игнатьева Е.В., Рассказов Д.А. и др. Интегрированная система для информационной поддержки исследования механизмов регуляции транскрипции // Тр. 12-й Всерос. науч. конф. «Электронные библиотеки: перспективные методы и технологии, электронные коллекции» – RCDL’2010. Казань, Россия, 2010. С. 69–75.

3. Разин С.В. Хроматин и регуляция транскрипции // Молекуляр. биология. 2007. Т. 41. № 3. С. 387–394.

4. Agalioti T., Lomvardas S., Parekh B. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-b promoter // Cell. 2000. V. 103. P. 667–678.

5. Baumgartner N., Retschitzegger W. A survey of upper ontologies for situation awareness // Proc. of the 4th IASTED Intern. Conf. on Knowledge Sharing and Collaborative Engineering, St. Thomas, US VI. 2006. Р. 1–9.

6. Beisswanger E., Lee V., Kim Jung J. Gene regulation ontology (GRO): design principles and use cases // II Proc. 21st. Intern. Congr. оf the Europ. Federation for Med. Inform. (MIE 2008). 2008. Р. 9–14.

7. Berger S.L. The complex language of chromatin regulation during transcription // Nature. 2007. V. 447. No. 7143. P. 407–412.

8. Blanchette M., Bataille A.R., Chen X. et al. Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression // Genome Res. 2006. V. 16. No. 5. P. 656–668.

9. Carey M., Smale S.T. Transcriptional Regulation in Eukaryotes: Concepts, Strategies, and Techniques. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 2000. 639 р.

10. Gene Ontology Consortium. The Gene Ontology in 2010: extensions and refi nements // Nucl. Acids Res. 2010. V. 38. P. D331–335.

11. Gene Regulatory aontology (GRO), version 0.5, 1.09.2011 – http://bioportal.bioontology.org/ontologies/1106.

12. Hahn S. Structure and mechanism of the RNA Polymerase II transcription machinery // Nat. Struct. Mol. Biol. 2004. V. 11. No. 5. P. 394–403.

13. Ignatieva E.V. TrDB: a database of the human, mouse, and rat transcriptional regulators and its potential applications in systems biology // The Eighth Intern. Conf. on Bioinformatics of Genome Regulation and Structure / Systems Biology (BGRS/SB’12). Novosibirsk, Russia, June 25–29. 2012. P. 125.

14. Kolchanov N.A., Ignatieva E.V., Ananko E.A. et al. Transcription Regulatory Regions Database (TRRD): its status in 2002 // Nucl. Acids Res. 2002. V. 30. No. 1. P. 312–317.

15. Kolchanov N.A., Ignatieva E.V., Podkolodnaya О.А. et al. TRRD: Technology for extraction, storage, and use of knowledge about the structural-functional organization of the transcriptional regulatory regions in the eukaryotic genes // Intell. Data Anal. 2008. V. 12. No. 5. P. 443–461.

16. Lemon B., Tjian R. Orchestrated response: a symphony of transcription factors for gene control // Genes Dev. 2000. V. 14. No. 20. P. 2551–2569.

17. Özgövde A., Grüninger M. Foundational process relations in bio-ontologies // Proc. of the Sixth Intern. Conf. on Formal Ontology in Information Systems (FOIS 2010). IOS Press Amsterdam, The Netherlands, 2010. P. 243–256.

18. Podkolodnyy N.L., Nechkin S.S., Ignatieva E.V. et al. A database for analysis of the organizational features of the promoter regions in the co-expressed groups of genes // Proc. of the Sixth Int. Conf. on Bioinformatics of Genome Regulation and Structure, 2008.

19. Ponomaryov D., Omelianchuk N., Mironova V. et al. From published expression and phenotype data to structured knowledge: The Arabidopsis gene net supplementary database and its applications // Lecture Notes in Artifi cial Intelligence. 2011. Р. 101–120.

20. Schaefer U., Schmeier S., Bajic V.B. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins // Nucl. Acids Res. 2011. V. 39. P. D106–D110.

21. Schober D., Smith B., Lewis S. et al. Survey-based naming conventions for use in OBO foundry ontology development // BMC Bioinformatics. 2009. 10(125). Р. 1–9.

22. Shipra A., Chetan K., Rao M.R.S. CREMOFAC – a database of chromatin remodeling factors // Bioinformatics. 2006. V. 22. No. 23. P. 2940–2944.

23. Smith B., Ashburner M., Rosse C. et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration // Nat. Biotech. 2007. 25(11). Р. 1251–1255.

24. Smith B., Ceusters W., Klagges B. et al. Relations in biomedical ontologies // Genome Biology. 2005. V. 6. No. R46. SPARQL Query Language for RDF. 1998 – http://www.w3.org/TR/rdf-sparql-query/


Review

Views: 524


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)